Question Description
If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared
according to
the GMAT exam syllabus. Information about If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer?.
Solutions for If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT.
Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice If x and y are positive integers such that x > y and the least common multiple and greatest common divisor of the two integers are 36 and 6 respectively, what is the value of x – y?(1) x = 18(2) x + y = 30a)Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.b)Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.c)BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.d)EACH statement ALONE is sufficient.e)Statements (1) and (2) TOGETHER are NOT sufficient.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice GMAT tests.