Question Description
Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? for Banking Exams 2025 is part of Banking Exams preparation. The Question and answers have been prepared
according to
the Banking Exams exam syllabus. Information about Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for Banking Exams 2025 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Banking Exams.
Download more important topics, notes, lectures and mock test series for Banking Exams Exam by signing up for free.
Here you can find the meaning of Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Directions :Each of the reading comprehension questions is based on the content of a passage. After reading the passage, answer all questions pertaining to it on the basis of what is stated or implied in the passage. For each question, select the best answer of the choices given -In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean.When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.One such adaptation is the closerproximityof the terrestrial snake’s heart to its head, which helps to ensure circulation to the brain, regardless of the snake’s orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. Inarborealsnakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.Q. The author describes the behavior of the circulatory system of sea snakes when they are removed from the ocean primarily in order toa)illustrate what would occur in the circulatory system of terrestrial snakes without adaptations that enable them to regulate their blood pressure in vertical orientationsb)explain why arboreal snakes in vertical orientations must rely on muscle contractions to restore blood pressure to the brainc)illustrate the effects of circulatory failure on the behavior of arboreal snakesd)illustrate the superiority of the circulatory system of the terrestrial snake to that of the sea snakee)explain how changes in spatial orientation can adversely affect the circulatory system of snakes with hearts located in relatively close proximity to their headsCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice Banking Exams tests.