The sum of the squares of the first 15 positive integers (12 + 22 + 32...
The key to solving this problem is to represent the sum of the squares of the second 15 integers as follows: (15 + 1)2 + (15 + 2)2 + (15 + 3)2 + . . . + (15 + 15)2.
Recall the popular quadratic form, (a + b)
2 = a
2 + 2ab + b
2. Construct a table that uses this expansion to calculate each component of each term in the series as follows:
In order to calculate the desired sum, we can find the sum of each of the last 3 columns and then add these three subtotals together. Note that since each column follows a simple pattern, we do not have to fill in the whole table, but instead only need to calculate a few terms in order to determine the sums.
The column labeled a2 simply repeats 225 fifteen times; therefore, its sum is 15(225) = 3375.
The column labeled 2ab is an equally spaced series of positive numbers. Recall that the average of such a series is equal to the average of its highest and lowest values; thus, the average term in this series is (30 + 450) / 2 = 240. Since the sum of n numbers in an equally spaced series is simply n times the average of the series, the sum of this series is 15(240) = 3600.
The last column labeled b2 is the sum of the squares of the first 15 integers. This was given to us in the problem as 1240.
Finally, we sum the 3 column totals together to find the sum of the squares of the second 15 integers: 3375 + 3600 + 1240 = 8215. The correct answer choice is (D).