Electronics and Communication Engineering (ECE) Exam  >  Electronics and Communication Engineering (ECE) Questions  >  A standard CMOS inverter is designed with equ... Start Learning for Free
A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?
  • a)
    N ML increases and N MH decreases.
  • b)
    Both N ML and N MH increase.
  • c)
    N ML decreases and N MH increase.
  • d)
    No change in the noise margins.
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
A standard CMOS inverter is designed with equal rise and fall times (&...
We know that
View all questions of this test
Most Upvoted Answer
A standard CMOS inverter is designed with equal rise and fall times (&...
T_rise = t_fall). This is achieved by using symmetric NMOS and PMOS transistors in the inverter circuit. When the input voltage (V_in) is high, the PMOS transistor is turned off and the NMOS transistor is turned on, allowing current to flow from the supply voltage (V_dd) to the output (V_out). When the input voltage is low, the NMOS transistor is turned off and the PMOS transistor is turned on, allowing current to flow from the output to ground. The time taken for the output voltage to transition from low to high (t_rise) and from high to low (t_fall) is determined by the capacitance of the load connected to the output and the resistance of the transistors in the inverter circuit. By designing the NMOS and PMOS transistors to have equal resistance and capacitance, the rise and fall times can be made equal. This ensures a balanced and symmetrical output waveform, which is important for many digital applications.
Attention Electronics and Communication Engineering (ECE) Students!
To make sure you are not studying endlessly, EduRev has designed Electronics and Communication Engineering (ECE) study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in Electronics and Communication Engineering (ECE).
Explore Courses for Electronics and Communication Engineering (ECE) exam

Top Courses for Electronics and Communication Engineering (ECE)

A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer?
Question Description
A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? for Electronics and Communication Engineering (ECE) 2024 is part of Electronics and Communication Engineering (ECE) preparation. The Question and answers have been prepared according to the Electronics and Communication Engineering (ECE) exam syllabus. Information about A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for Electronics and Communication Engineering (ECE) 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer?.
Solutions for A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for Electronics and Communication Engineering (ECE). Download more important topics, notes, lectures and mock test series for Electronics and Communication Engineering (ECE) Exam by signing up for free.
Here you can find the meaning of A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer?, a detailed solution for A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice A standard CMOS inverter is designed with equal rise and fall times (βn = βp). If the width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NML) and the HIGH noise margin NMH?a)N ML increases and N MH decreases.b)Both N ML and N MH increase.c)N ML decreases and N MH increase.d)No change in the noise margins.Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice Electronics and Communication Engineering (ECE) tests.
Explore Courses for Electronics and Communication Engineering (ECE) exam

Top Courses for Electronics and Communication Engineering (ECE)

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev