GMAT Exam  >  GMAT Questions  >  A team of researchers has been able to succes... Start Learning for Free
A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls. 
Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study.  But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).
This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria.  The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.
Which of the following can be inferred from the passage?
  • a)
    The same antibiotic will have different reactions on humans and animals.
  • b)
    The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.
  • c)
    The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.
  • d)
    Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.
  • e)
    Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
A team of researchers has been able to successfully study the highly c...
Passage Analysis
 
Summary and Main Point
 
Pre-Thinking
This is an Inference question. The correct answer will either be a restatement of what’s given in the passage or be a statement that can be deduced on the basis of the given information but may not be itself be explicitly stated in the passage. Negate the answer choices that are not bolstered by specific facts mentioned in the passage.
Answer Choices
A
The same antibiotic will have different reactions on humans and animals.
Incorrect: Out Of Scope
There is no information given in the passage about the comparative action of any antibiotic on humans and animals.
B
The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.
Incorrect: Out Of Scope
To begin with, there is no mention of any pharmaceutical companies. Yes, the author talks about how the research could lead to the development of better (less harmful) antibiotics but there is no information given in the passage to support that such companies will gain significantly in monetary terms by developing them.
C
The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.
Correct
This choice is a combination of a couple of statements from the passage. The author tells us that mitoribosomes are ribosomes of a specific kind (first paragraph) and that they are particularly difficult to study because they are found only in small amounts and are difficult to isolate (second paragraph). Hence, one can infer the information given in this choice.
D
Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.
Incorrect: Out Of Scope
All the author tells us is how this advancement enabled the researcher to capture certain details for the first time. However, it gives us no ground to infer that the study of mitoribosomes itself would have been impossible or that before the study, there was no information available on them.
E
Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.
Incorrect: Out Of Scope
There is no information given in the passage to conclude that the antibiotics do not have any adverse effect on other kinds of ribosomes.
View all questions of this test
Explore Courses for GMAT exam

Similar GMAT Doubts

A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or power houses of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following is mentioned in the passage?

A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or power houses of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.The author is primarily concerned with

A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or power houses of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following most aptly describes the function of the first paragraph?

Top Courses for GMAT

A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer?
Question Description
A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer?.
Solutions for A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer?, a detailed solution for A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? has been provided alongside types of A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice A team of researchers has been able to successfully study the highly complex molecular structure of mitoribosomes, which are the ribosomes of mitochondria. Ribosomes are found in the cells of all living organisms, and they serve as a primary location for biological protein synthesis, but certain organisms such as fungi, plants, animals, and humans contain much more complex ribosomes than bacteria do. In organisms with complex cells, ribosomes can also be divided into two types: those in the cytosol -- which comprises the majority of the cell -- and those found in the mitochondria or "power houses" of cells. Mitochondria are found only in eukaryotes. Every ribosome consists of two subunits. The smaller subunit uses transfer ribonucleic acids to decode the genetic code, which is stored in the DNA, it receives in the form of messenger ribonucleic acids, while the larger subunit joins the amino acids delivered by the transfer ribonucleic acids together like a string of pearls.Since they are found only in small amounts and are difficult to isolate, mitochondrial ribosomes or mitoribosomes are particularly difficult to study. But because of the recent technical advances in cryo-electron microscopy and the development of direct electron detection cameras that can correct for specimen motion during the exposure, it recently became possible to capture images of biomolecules at a resolution high enough to capture the details, especially those of the peptidyl transferase centre (PTC).This research is of special importance to producing the right kind of antibiotics for humans. PTC is where the amino acid building blocks are combined, leading to protein synthesis. As per the researchers, this process of synthesizing proteins is medically relevant as the tunnel through which the proteins pass, after being synthesized, is a target for specific antibiotics. The antibiotic blocks the tunnel, preventing the proteins that have just been synthesized from leaving the tunnel. However, for an antibiotic to be used in humans, it must not attack human ribosomes and should inhibit protein synthesis only in the ribosomes of bacteria. The problem arises since mitochondrial ribosomes resemble those of bacteria, which is why certain antibiotics also interfere with mitoribosomes, possibly leading to serious side effects. The findings of the research will make it possible in the future to design antibiotics that inhibit only bacterial and not mitochondrial ribosomes, the one basic requirement for using them in clinical applications.Which of the following can be inferred from the passage?a)The same antibiotic will have different reactions on humans and animals.b)The pharmaceutical companies that have been producing antibiotics that inadvertently harm people by blocking the release of the proteins will gain significant monetary benefit from producing antibiotics that do not attack the human body in such a way.c)The quantity of a specific kind of ribosomes was partly responsible for the limited success in studying them.d)Without the latest technical advances in cryo- electron microscopy, it would not have been possible to study mitoribosomes at all.e)Mitoribosomes are the only kind of ribosomes that are adversely affected by antibiotics.Correct answer is option 'C'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev