Electrical Engineering (EE) Exam  >  Electrical Engineering (EE) Questions  >  Assertion (A): The Gauss’s divergence t... Start Learning for Free
Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.
Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.
  • a)
    Both A and R are true and R is a correct explanation of A
  • b)
    Both A and R are true but R is not a correct explanation of A
  • c)
    A is true but R is false
  • d)
    A is false but R is true
Correct answer is option 'C'. Can you explain this answer?
Verified Answer
Assertion (A): The Gauss’s divergence theorem permits us to expr...
Reason is a statement of stroke’s theorem not that of Gauss's divergence theorem.
View all questions of this test
Explore Courses for Electrical Engineering (EE) exam

Top Courses for Electrical Engineering (EE)

Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer?
Question Description
Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? for Electrical Engineering (EE) 2024 is part of Electrical Engineering (EE) preparation. The Question and answers have been prepared according to the Electrical Engineering (EE) exam syllabus. Information about Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? covers all topics & solutions for Electrical Engineering (EE) 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer?.
Solutions for Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? in English & in Hindi are available as part of our courses for Electrical Engineering (EE). Download more important topics, notes, lectures and mock test series for Electrical Engineering (EE) Exam by signing up for free.
Here you can find the meaning of Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer?, a detailed solution for Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? has been provided alongside types of Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Assertion (A): The Gauss’s divergence theorem permits us to express certain integrals by means of surface integrals.Reason (R): Gauss’s divergence theorem states that “the surface integral of the curl of a vector field taken over any surface s is equal to the line integral of the vector field around the closed periphery (contour) of the surface.a)Both A and R are true and R is a correct explanation of Ab)Both A and R are true but R is not a correct explanation of Ac)A is true but R is falsed)A is false but R is trueCorrect answer is option 'C'. Can you explain this answer? tests, examples and also practice Electrical Engineering (EE) tests.
Explore Courses for Electrical Engineering (EE) exam

Top Courses for Electrical Engineering (EE)

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev