CLAT Exam  >  CLAT Questions  >   [1]Part of the confidence, with which artifi... Start Learning for Free
[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."
[4]The emphases that characterizes this school of thought are as follows:
[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.
[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.
[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.
Q. Which of the following best explains the organization of the paragraph?
  • a)
    The historical backgrounds of two currently used research methods are chronicled.
  • b)
    The usefulness of a research method is questioned and then a new method is proposed.
  • c)
    A research method is evaluated and the changes necessary for its adaptation to the theory are explained.
  • d)
    An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.
Correct answer is option 'D'. Can you explain this answer?
Verified Answer
[1]Part of the confidence, with which artificial intelligence researc...
Option(A) is incorrect because historical background or chronological events are not discussed. An ongoing research was mentioned but not the existing one or a new one. So option(B) is incorrect. Option(C) discusses about a research method, theory, changes suggested for adaptation and is hence incorrect. Mind is a physical entity, that operates in a parallel fashion. It can be analyzed. AI researchers by combining information from other areas, hope to find great results. The answer is Option(D).
View all questions of this test
Most Upvoted Answer
[1]Part of the confidence, with which artificial intelligence researc...
Explanation of the Organization of the Paragraph
The paragraph provides a comprehensive overview of current perspectives in artificial intelligence (AI) research, particularly emphasizing the shift in understanding brain function and its implications for AI development. The best explanation for the organization of the paragraph is option 'D'.
Key Points Supporting Option D:
- Presentation of Accepted Views:
- The paragraph begins by outlining widely accepted materialist assumptions regarding the brain and mind.
- It emphasizes the belief that the brain’s operations can be understood through physical and biochemical processes.
- Shift in Emphasis Due to New Data:
- The text discusses the emergence of "the new connectionism" among AI researchers, highlighting a paradigm shift.
- It notes how new experimental data in neuroscience challenges previous assumptions about cognitive functions.
- Researcher Aspirations:
- The latter part of the paragraph conveys the hope of AI researchers to integrate theoretical insights with empirical data.
- Researchers aim to elucidate complex brain functions by analyzing patterns derived from experimental findings.
- Conclusion of the Paragraph:
- The overall structure illustrates a transition from established beliefs to a new understanding shaped by recent advances in neuroscience.
- This aligns well with option 'D', as it encapsulates the accepted view and the resulting change in emphasis driven by new experimental data.
In summary, the paragraph effectively presents previously accepted views on brain function and highlights how emerging experimental insights are influencing a significant shift in AI research methodology.
Explore Courses for CLAT exam

Similar CLAT Doubts

[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 perio d) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following is the meaning of the word "illuminating" as used in the context of the paragraph in Sentence 13?

[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 perio d) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following is the best title of the passage?

[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 perio d) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Neuroscientists would most likely agree to which of the following?

[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 perio d) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. All the sentences in the above passage are grammatically correct in the context of the passage, except

[1]Studies of brain evolution are compelling because of their implications for understanding human evolution. [2]Consequently, researchers are motivated by a desire to find the causes of intelligence. [3]What is intelligence? [4]It is inevitably described with respect to human attributes; we consider ourselves intelligent, and we therefore compare other species to ourselves. [5]This view is legitimized by the fact that humans do have very sophisticated brains, exhibit extraordinarily complex behavior, and cope well in novel situations, generalizing from one problem to another.[6]Unfortunately, criteria applicable to humans are not necessarily appropriate for evaluating traits of other organisms. [7]There is no basis for the assumption that all intelligence is human-like intelligence, nor even for the preconception that all primate intelligence is human-like. [8]To say that intellectual prowess is comparative across species and to use humans as the basis for comparison is a continuation of pre-Darwinian ideas of a scala naturae dealing with intelligence. [9]If ranking species in a single phylogenetic line according to criteria based on the extant member is questionable, then certainly since ecological conditions and selection pressures change over time, ranking contemporary species separated by millions of years of evolution based on the traits exhibited by one is unjustifiable. [10]To assume a continuum of intelligence across today's species is incompatible with an evolutionary perspective, and this preconception must not be allowed to guide studies of brain evolution. [11]The information-processing systems of different animals have been designed to respond to different stimuli, diverse ""cognitive substrates,"" and therefore expectations of an interspecific regularity between these IPS and various other body measures are ill-conceived.[12]What # lacking # a good definition # intelligence that will allow us # say something # how an animal copes # its own ecology and not how closely # approximates human behavior. [13]There are undeniable trends in the history of life -- towards larger brains in mammals and larger neocortices in primates -- but to generalize correlations of these trends into a concept of intelligence should not be attempted until an accurate definition is developed. [14]Until that time, the most that comparative brain size studies can do is demonstrate correlations and thereby pose questions for scientists who focus on the evolution of species with one of these correlated characteristics.Q. The initial definition of ‘Intelligence’ is given with respect to Humans. This is considered acceptable to some because?

Top Courses for CLAT

[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer?
Question Description
[1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? for CLAT 2025 is part of CLAT preparation. The Question and answers have been prepared according to the CLAT exam syllabus. Information about [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for CLAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer?.
Solutions for [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for CLAT. Download more important topics, notes, lectures and mock test series for CLAT Exam by signing up for free.
Here you can find the meaning of [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice [1]Part of the confidence, with which artificial intelligence researchers view the prospects of their field stems from the materialist assumptions they make. [2]One is that "mind" is simply a name for the information-processing activity of the brain. Another is that the brain is a physical entity that acts according to the laws of biochemistry and is not influenced by any irreducible "soul" or other unitary, purely mental entity that is incapable of analysis as a causal sequence of elementary biochemical events. [3]This broadly accepted view, together with the rapidly mounting mass of information concerning nervous system physiology, microanatomy, and signaling behavior and with the current technology-based push to construct analogous computing systems involving thousands of elements acting in parallel, has encouraged a shift in emphasis among AI researchers that has come to be identified as "the new connectionism."[4]The emphases that characterizes this school of thought are as follows:[5]Firstly, the brain operates not as a serial computer of conventional type but in enormously parallel fashion. [6]The parallel functioning of hundreds of thousands or millions of neurons in the brain's subtle information-extraction processes attains speed. [7]Coherent percepts are formed in times that exceed the elementary reaction times of single neurons by little more than a factor of ten. [8]Especially for basic perceptual processes like sight, this observation rules out iterative forms of information processing that would have to scan incoming data serially or pass it through many intermediate processing stages. [9]Since extensive serial symbolic search operations of this type do not seem to characterize the functioning of the senses, the assumption (typical for much of the AI-inspired cognitive science speculation of the 1960-80 period) that serial search underlies various higher cognitive functions becomes suspect.[10]Secondly, within the brain, knowledge is stored not in any form resembling a conventional computer program but structurally, as distributed patterns of excitatory and inhibitory synaptic strengths whose relative sizes determine the flow of neural responses that constitutes perception and thought.[11]AI researchers developing these views have been drawn to involvement in neuroscience by the hope of being able to contribute theoretical insights that could give meaning to the rapidly growing, but still bewildering, mass of empirical data being gathered by experimental neuroscientists (many of whom regard theoretical speculation with more than a little disdain). [12]These AI researchers hope to combine clues drawn from experiment with the computer scientists' practiced ability to analyze complex external functions into patterns of elementary actions. [13]By assuming some general form for the computational activities characteristic of these actions, they hope to guess something illuminating about the way in which the perceptual and cognitive workings of the brain arise.Q. Which of the following best explains the organization of the paragraph?a)The historical backgrounds of two currently used research methods are chronicled.b)The usefulness of a research method is questioned and then a new method is proposed.c)A research method is evaluated and the changes necessary for its adaptation to the theory are explained.d)An accepted view is presented and the change of emphasis because of new experimental data is explained. And researchers hope to find something great.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice CLAT tests.
Explore Courses for CLAT exam

Top Courses for CLAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev