JEE Exam  >  JEE Questions  >  Liquids A and B form ideal solution for all c... Start Learning for Free
Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?
    Correct answer is '0.20'. Can you explain this answer?
    Most Upvoted Answer
    Liquids A and B form ideal solution for all compositions of A and B at...
    Free Test
    Community Answer
    Liquids A and B form ideal solution for all compositions of A and B at...
    °C. This means that the interactions between the molecules of A and B are similar, and no significant forces of attraction or repulsion exist between them.

    As a result, the properties of the mixture such as boiling point, freezing point, and vapor pressure depend on the mole fraction of each component in the mixture. The mole fraction of a component is the ratio of the number of moles of that component to the total number of moles in the mixture.

    For example, if we have a mixture of 50% A and 50% B by mole fraction, the boiling point of the mixture will be an average of the boiling points of pure A and pure B. Similarly, the vapor pressure of the mixture will be an average of the vapor pressures of pure A and pure B.

    This behavior is described by Raoult's law, which states that the vapor pressure of a component in an ideal solution is proportional to its mole fraction in the mixture. Mathematically, this can be expressed as:

    P(A) = X(A) * P˚(A)

    where P(A) is the vapor pressure of component A in the mixture, X(A) is the mole fraction of component A in the mixture, and P˚(A) is the vapor pressure of pure A.

    Raoult's law is applicable only for ideal solutions, and deviations from this behavior can occur for non-ideal solutions. These deviations can arise due to differences in the size, shape, and polarity of the molecules of the components, as well as due to the presence of intermolecular forces such as hydrogen bonding.
    Explore Courses for JEE exam

    Similar JEE Doubts

    Ideal Solution at Fixed TemperatureConsider two liquids B and C that form an ideal solution. We hold the temperature fixed at some value T thatis above the freezing points of B and C. We shall plot the systems pressure P against XB, the overall molefraction of B in the system :Where are the number of moles of B in the liquid and vapor phases, respectively. For a closed system XB is fixed, although may vary.Let the system be enclosed in a cylinder fitted with a piston and immersed in a constant-temperature bath. To see what the P-versus–XB phase diagram looks like, let us initially set the external pressure on the piston high enough for the system to be entirely liquid (point A in figur e) As the pressure is lowered below that at A, the system eventually reaches a pressure where the liquid just begins to vaporizes (point D). At point D, the liquid has composition at D is equal to the overall mole fraction XB since only an infinitesimal amount of liquid has vapourized. What is the composition of the first vapour that comes off ? Raoults law, relates the vapour-phase mole fractions to the liquid composition as follows :............(1)Where PB0 and PC0 are the vapour pressures of pure B and pure C at T, where the systems pressure P equals the sum PB + PC of the partial pressures, where, and the vapour is assumed ideal. ............(2)Let B be the more volatile component, meaning that . Above equation then shows that The vapour above an ideal solution is richer than the liquid in the more volatile component. Equations (1) and (2) apply at any pressure where liquid –vapour equilibrium exists, not just at point D.Now let us isothermally lower the pressure below point D, causing more liquid to vaporize. Eventually, wereach point F in figure , where the last drop of liquid vaporizes. Below F, we have only vapour. For any pointon the line between D and F liquid and vapour phases coexist in equilibrium.Q. Two liquids A and B have the same molecular weight and form an ideal solution. The solution has a vapour pressure of 700 Torrs at 80ºC. It is distilled till 2/3rd of the solution (2/3rd moles out of total moles) is collected as condensate. The composition of the condensate is xA = 0.75 and that of the residue is xA= 0.30. If the vapour pressure of the residue at 80ºC is 600 Torrs, find the original composition of the liquid ?

    Consider two liquids B and C that form an ideal solutlion. We hold the temperature fixed at some value T that is above the freezing points of B and C .We shall plot the systems pressure P and against XB the overall mole fraction of B in the system :Where nbland nbvare the number of moles of B in the liquid and vapor phases, respectively. For a close system xB, is fixed, although nBland nBvmay vary. Let the system be enclosed in a cylinder fitted with a piston and immersed in a constant-temperature bath.To see what the P-versus-xB phase diagram looks like, let us initially set the external pressure on the piston high enough for the system to be entirely liquid (point A in figur e) As the pressure is lowered below that at A, the system eventually reaches a pressure where the liquid just begins to vaporizes (point D). At point D, the liquid has composition xlbwhere xlbat D is equal to the overall mole fraction xB since only an infinitesimal amount of liquid has vapourized. What is the composition of the first vapour that comes off ? Raoults law, Pb=xvbPobrelates the vapour-phase mole fractions to the liquid composition as follows:Where Poband Pocare the vapour pressures of pure B and pure C at T, where the systems pressure P equals the sum PB + Pc of the partial pressures, where and the vapor is assumed ideal.Let B be the more volatile component, meaning that PobPocAbove equation then shows that Xvb/XvcXlb/XlcThe vapor above an ideal solution is richer than the liquid in the more volatile component. Equations (1) and (2) apply at any pressure where liquid -vapor equilibrium exists, not just at point D. Now let us isothermally lower the pressure below point D, causing more liquid to vaporize. Eventually, WE reach point F in figure, where the last drop of liquid vaporizes. Below F, we have only vapor. For any point or the line between D and F liquid and vapor phases coexist in equilibrium.Q.Two liquids A and B have the same molecular weight and form an ideal solution. The solution has a vapor pressure of 700 Torrs at 80C. It is distilled till 2/3rd of the solution (2/3rd moles out of total moles) is collected as condensate.The composition of the condensate is xA = 0.75 and that of the residue is XA= 0.30. If the vapor pressure of the residue at 80C is 600 Torrs, find the original composition of the liquid.

    Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer?
    Question Description
    Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? for JEE 2025 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? covers all topics & solutions for JEE 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer?.
    Solutions for Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
    Here you can find the meaning of Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer?, a detailed solution for Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? has been provided alongside types of Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Liquids A and B form ideal solution for all compositions of A and B at 25°C. Two such solutions with 0.25 and 0.50 mole fractions of A have the total vapor pressures of 0.3 and 0.4 bar, respectively. What is the vapor pressure of pure liquid B in bar?Correct answer is '0.20'. Can you explain this answer? tests, examples and also practice JEE tests.
    Explore Courses for JEE exam

    Top Courses for JEE

    Explore Courses
    Signup for Free!
    Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
    10M+ students study on EduRev