CAT Exam  >  CAT Questions  >   Direction: Read the passage carefully and an... Start Learning for Free
Direction: Read the passage carefully and answer the questions
The last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.
The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.
The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.
More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.
Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.
Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.
Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:
  • a)
    both polar and equatorial glacial deposits have been found.
  • b)
    certain geological information can be considered lost forever.
  • c)
    it is more important to determine the date of the ice ages than the extent of the glaciers.
  • d)
    the glaciers were extremely mobile in spite of their mass.
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
Direction: Read the passage carefully and answer the questionsThe las...
Try to get a basic prediction for assumption questions if possible. If scientists don't know whether the poles or the equator were the coolest, they must have some sort of evidence that both were awfully cold. (A) fits this. If unsure, try the denial test: If glacial deposits haven't been found at both, then one should be demonstrably colder than the other.
Wrong answers:
(B): Distortion. The argument that scientists are unsure doesn't depend on the idea that some geological information is forever gone. While this may be true, it's not why scientists are unsure.
(C): Out of Scope. This has nothing to do with the statement.
(D): Out of Scope. Even if this were true, it still wouldn't explain why geologists were unsure which part of the earth had been the coolest.
Free Test
Community Answer
Direction: Read the passage carefully and answer the questionsThe las...
Implicit assumption in the statement:
There is an implicit assumption made in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:

Explanation:
1. Presence of both polar and equatorial glacial deposits:
The implicit assumption is based on the fact that geologists have found glacial deposits in both polar regions and areas closer to the equator. This suggests that the cooling effect of the ancient ice ages may have been experienced in various parts of the world, making it unclear which regions were the coldest.
2. Lack of conclusive geological information:
Geologists face uncertainties in determining the exact locations of the coolest places during the ancient ice ages due to incomplete or inconclusive geological data. This lack of definitive information hinders their ability to pinpoint whether the poles or the equator experienced the most significant cooling.
3. Importance of dating versus extent of glaciers:
The statement implies that the focus on determining the timing of the ice ages may overshadow the investigation into the extent of the glaciers. Understanding both the date and the geographical reach of the glaciers is crucial for piecing together the puzzle of ancient climate patterns.
4. Mobility of glaciers:
Despite the massive size and weight of glaciers, the statement hints at the possibility that these icy formations might have been more mobile than previously thought. This uncertainty adds another layer of complexity to the study of ancient ice ages.
In conclusion, the implicit assumption underscores the challenges faced by geologists in unraveling the mysteries of the ancient ice ages, highlighting the need for comprehensive data analysis and interpretation.
Explore Courses for CAT exam

Similar CAT Doubts

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Suppose paleobotanists discover that during geological periods of reduced sunlight, ancient forests died away, leaving fossilized remains. What is the relevance of this information to the passage?

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Suppose that an advocate of the "change in orbit " theory of the ancient ice ages criticizes a defender of the "volcanic eruption " theory on the grounds that only some of the glacial records contain evidence of prior volcanic activity. The defender might justifiably counter this attack by pointing out that

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. According to the passage, which of the following is most likely to be true about the relationship between the amount of data one has about a phenomenon and the number of theoretically plausible explanations?

Top Courses for CAT

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer?
Question Description
Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? for CAT 2025 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for CAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer?.
Solutions for Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer?, a detailed solution for Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that:a)both polar and equatorial glacial deposits have been found.b)certain geological information can be considered lost forever.c)it is more important to determine the date of the ice ages than the extent of the glaciers.d)the glaciers were extremely mobile in spite of their mass.Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev