CAT Exam  >  CAT Questions  >   Direction: Read the passage carefully and an... Start Learning for Free
Direction: Read the passage carefully and answer the questions
The last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.
The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.
The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.
More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.
Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.
Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.
Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?
  • a)
    Recent geological events can be substantially easier to investigate than ancient ones.
  • b)
    Deposits of ground—up rocks always indicate that an ice age occurred.
  • c)
    Discovering the cause of the ancient ice ages will have important practical consequences.
  • d)
    Each of the early ice ages had a different proximate cause.
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
Direction: Read the passage carefully and answer the questionsThe las...
What is the author's main purpose of writing the passage? It's a bit more difficult to paraphrase purposes in an objective passage, but the author clearly intends to show that data on the ancient ice ages is sketchy. The author argues throughout the first half the passage that it's hard to understand much about the earlier ice ages because the evidence is so much older than that of later glaciations. This would suggest that investigating later ice ages, and geologic events in general, is easier: (A).
Wrong answers:
(B): Distortion. Though ground—up rocks appear in the end of paragraph 2 as evidence of an ice age, there's nothing to suggest that the author believes they always indicate an ice age (note the extreme word "always ").
(C): Out of Scope. The author isn't concerned with the consequences of the theories, only the theories and evidences themselves.
(D): Distortion. While the author argues that there are different theories, each ice age didn't necessarily have a different cause.
Free Test
Community Answer
Direction: Read the passage carefully and answer the questionsThe las...
Explanation:

Recent geological events can be substantially easier to investigate than ancient ones
- The author would most likely NOT disagree with this statement because the passage mentions that the marks left by ancient glaciations are subtle and ghostly, making it difficult to track the history of early ice ages.
- In contrast, recent geological events, such as those observed by Louis Agassiz in the Swiss countryside, leave clearer telltales on the landscape, making them easier to investigate.
Therefore, the author would agree that recent geological events can be substantially easier to investigate than ancient ones, as supported by the passage's discussion on the visibility and clarity of telltale signs of ice ages.
Explore Courses for CAT exam

Similar CAT Doubts

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. There is an implicit assumption in the statement that geologists don't know whether the coolest places on earth were near the poles or near the equator. The assumption is that

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. According to the passage, which of the following is most likely to be true about the relationship between the amount of data one has about a phenomenon and the number of theoretically plausible explanations?

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Suppose paleobotanists discover that during geological periods of reduced sunlight, ancient forests died away, leaving fossilized remains. What is the relevance of this information to the passage?

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Suppose that an advocate of the "change in orbit " theory of the ancient ice ages criticizes a defender of the "volcanic eruption " theory on the grounds that only some of the glacial records contain evidence of prior volcanic activity. The defender might justifiably counter this attack by pointing out that

Read the following passage and answer the questions that follows:Archaeology as a profession faces two major problems. First, it is the poorest of the poor. Only paltry sums are available for excavating and even less is available for publishing the results and preserving the sites once excavated. Yet archaeologists deal with priceless objects every day.Second, there is the problem of illegal excavation, resulting in museum-quality pieces being sold to the highest bidder.I would like to make an outrageous suggestion that would at one stroke provide funds for archaeology and reduce the amount of illegal digging. I would propose that scientific archeological expeditions and governmental authorities sell excavated artifacts on the open market. Such sales would provide substantial funds for the excavation and preservation of archaeological sites and the publication of results. At the same time, they would break the illegal excavator’s grip on the market, thereby decreasing the inducement to engage in illegal activities.You might object that professionals excavate to acquire knowledge, not money. Moreover, ancient artifacts are part of our global cultural heritage, which should be available for all to appreciate, not sold to the highest bidder. I agree. Sell nothing that has unique artistic merit or scientific value. But, you might reply, everything that comes out of the ground has scientific value. Here we part company. Theoretically, you may be correct in claiming that every artifact has potential scientific value. Practically, you are wrong.I refer to the thousands of pottery vessels and ancient lamps that are essentially duplicates of one another. In one small excavation in Cyprus, archaeologists recently uncovered 2,000 virtually indistinguishable small jugs in a single courtyard, even precious royal seal impressions known as melekh handles have been found in abundance — more than 4,000 examples so far.The basement of museums is simply not large enough to store the artifacts that are likely to be discovered in the future. There is not enough money even to catalogue the finds; as a result, they cannot be found again and become as inaccessible as if they had never been discovered. Indeed, with the help of a computer, sold artifacts could be more accessible than are the pieces stored in bulging museum basements. Prior to sale, each could be photographed and the list of the purchasers could be maintained on the computer A purchaser could even be required to agree to return the piece if it should become needed for scientific purposes. It would be unrealistic to suggest thatillegal digging would stop if artifacts were sold in the open market. But the demand for the clandestine product would be substantially reduced. Who would want an unmarked pot when another was available whose provenance was known, and that was dated stratigraphically by the professional archaeologist who excavated it?Q.The author’s argument concerning the effect of the official sale of duplicate artifacts on illegal excavation is based on which of the following assumptions?

Top Courses for CAT

Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer?
Question Description
Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? for CAT 2025 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for CAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer?.
Solutions for Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer?, a detailed solution for Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Direction: Read the passage carefully and answer the questionsThe last ice age has left its telltales written quite clearly across the landscape. When Louis Agassiz first promulgated his theory that ice had once covered the Swiss countryside, he looked to the valleys there that retain glaciers to this day. Like other observers, he noted the presence of strange boulders, called "erratics, " tossed down in valleys like flotsam after a flood had drained away. He saw the strange polish along the bedrock—a sheen imparted as if by some massive swipe of sandpaper; he saw the debris of rocks and boulders fringing the margin of existing glaciers. He saw what can be seen still, markings in stone that indicated that ice once flowed over vast stretches of land now clear and verdant.The first great glaciations must have scored the earth as deeply in their turn, and, in principle, we ought to be able to track the history of the early ice ages by following the same reasoning Agassiz used to persuade himself and his contemporaries that ice once covered the earth. But the marks left by these earlier glaciations are quite subtle, tracks turned ghostly with great age. There are, however, telltale deposits of ancient rocks that strongly suggest that they had been ground together and laid down by the spread of ice.The Australian climate historian L.A. Frakes has prospected through various theories proposed to account for those early ice ages. He isn't terribly enthusiastic about any of the possible culprits, but his choice for the least unlikely of them all emerges out of the recent revival of what was once a radically unorthodox idea: that continents drift over the face of the planet. Frakes argues that the glaciers originated at sites near the poles and that the ice ages began because the continents of the early earth had drifted to positions that took more and more of their land nearer to the polar regions.More land near the poles meant that more precipitation fell as snow and could be compacted on land to form glaciers. With enough glaciers, the increase in the amount of sunlight reflected back into space off the glistening white sheen of the ice effectively reduced the amount by which the sun warmed the earth, creating the feedback loop by which the growth of glaciers encouraged the growth of more glaciers. Rocks have been found in North America, Africa and Australia whose ages appear to hover around the 2.3 billion—year—old mark. That date and their spread are vague enough, however, to make it almost impossible to determine just how much of the earth was icebound during the possible range of time in which each of the glacial deposits was formed.Uncertainties about both the timing and the extent of these glaciers also muddy the search for the cause of the ancient ice ages. The record is so spotty that geologists are not sure whether areas near the equator or nearer the poles were the coolest places on earth. It's also possible that volcanic eruptions had tossed enough dust into the atmosphere to screen out sunlight and cool the earth. While some of the glacial records in the rocks do indeed contain evidence of volcanic activity prior to the buildup of glacial debris, others do not.Such traces are the currency of science—data—and like money, a richness of data both buys you some credibility and ties you down, eliminating at least some theoretically plausible explanations. For this early period, theorists have come up with a variety of ideas to explain the ancient ice ages, all elegant and mostly immune to both proof and criticism. For example, a change in the earth's orbit could have reduced the amount of sunlight reaching the planet. However, the only physical signature of such an event that would show in the rocks would be the marks of the glaciers themselves.Q. Based on the passage, with which of the following statements would the author most likely NOT disagree?a)Recent geological events can be substantially easier to investigate than ancient ones.b)Deposits of ground—up rocks always indicate that an ice age occurred.c)Discovering the cause of the ancient ice ages will have important practical consequences.d)Each of the early ice ages had a different proximate cause.Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev