CAT Exam  >  CAT Questions  >   Directions: Analyse the following passage an... Start Learning for Free
Directions: Analyse the following passage and provide appropriate answers.
An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.
The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.
Q. Quick estimate, as per Fermi, is most useful in:
  • a)
    In finding an approximate that is more useful than existing values.
  • b)
    In finding out the exact minimum value of an estimate.
  • c)
    In finding out the exact maximum value of an estimate.
  • d)
    in finding out the range of values of an estimate.
  • e)
    In finding out the average value of an estimate.
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
Directions: Analyse the following passage and provide appropriate ans...
Quick Estimate in Finding Range of Values
Quick estimates, as per Fermi, are most useful in finding out the range of values of an estimate. This technique involves making rough calculations based on limited information to arrive at a reasonable approximation.

Benefits of Quick Estimates:
- Quick estimates provide a rough idea of the potential range within which the actual value may lie.
- They allow for a quick assessment of the magnitude of a quantity without the need for precise measurements or instruments.

Example from the Passage:
- In the passage, Fermi used quick estimation techniques to determine the yield of the atomic blast by observing the scattering of confetti in the wind.
- By analyzing the farthest scattered pieces, Fermi was able to estimate that the yield must be greater than 10 kilotons, which later turned out to be 18.6 kilotons.

Importance of Finding Range of Values:
- Knowing the range of possible values is crucial in decision-making, planning, and problem-solving.
- It helps in setting realistic expectations and understanding the potential variability in outcomes.

Conclusion:
Quick estimates, such as those employed by Fermi, are valuable tools for obtaining a rough understanding of quantities and parameters. By focusing on finding the range of values, individuals can make informed decisions and navigate uncertainty effectively.
Free Test
Community Answer
Directions: Analyse the following passage and provide appropriate ans...
Since the quick estimate is based on approximation, it won’t be useful in finding exact values. So, options 2 and 3 are ruled out. According to the passage, estimation helps when ability to confirm results is not so easy, so option 1 is also ruled out. Since the passage clearly points out that quick estimate helps in finding minimum or maximum value of an estimate, option D is the answer
Attention CAT Students!
To make sure you are not studying endlessly, EduRev has designed CAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in CAT.
Explore Courses for CAT exam

Similar CAT Doubts

Directions for Questions Analyse the following passage and provide appropriate answers. An example of a scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind To a quantity he wanted to measure. The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a Fermi question was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Quick estimate, as per Fermi, is most useful in

Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?

Directions for Questions Analyse the following passage and provide appropriate answers. An example of a scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind To a quantity he wanted to measure. The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a Fermi question was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?

Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Given below are some statements that attempt to capture the central idea of the passage:1. It is useful to estimate; even when the exact answer is known.2. It is possible to estimate any physical quantity.3. It is possible to estimate the number of units of a newly launched car that can be sold in a city4. Fermi was a genius.Q. Which of the following statements (s) best captures the central idea?

Directions for Questions Analyse the following passage and provide appropriate answers. An example of a scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind To a quantity he wanted to measure. The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a Fermi question was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Given below are some statements that attempt to capture the central idea of the passage:1. It is useful to estimate; even when the exact answer is known.2. It is possible to estimate any physical quantity.3. It is possible to estimate the number of units of a newly launched car that can be sold in a city4. Fermi was a genius.Which of the following statements (s) best captures the central idea?

Top Courses for CAT

Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer?
Question Description
Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer?.
Solutions for Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in:a)In finding an approximate that is more useful than existing values.b)In finding out the exact minimum value of an estimate.c)In finding out the exact maximum value of an estimate.d)in finding out the range of values of an estimate.e)In finding out the average value of an estimate.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev