CAT Exam  >  CAT Questions  >   Directions: Analyse the following passage an... Start Learning for Free
Directions: Analyse the following passage and provide appropriate answers.
An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.
The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.
Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?
  • a)
    You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.
  • b)
    You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.
  • c)
    You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.
  • d)
    You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.
  • e)
    All the above conclusions can be drawn.
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
Directions: Analyse the following passage and provide appropriate ans...
How do you solve this application question? First you derive what Fermi did: Fermi’s method was used to calculate the minimum estimate for the yield of the blast. Which options talks in terms of the minimum of some value? Option 1 is only one that fulfils this criteria, the other options provide us average or exact values, and hence can be ruled out.
Free Test
Community Answer
Directions: Analyse the following passage and provide appropriate ans...
Understanding Fermi's Measurement Technique
Enrico Fermi's ability to make intuitive estimates without sophisticated instruments demonstrates a creative approach to problem-solving. He based his conclusions on observable phenomena, which is the essence of the method applied in option 'A'.

Analysis of Option A
- **Context of Pressure Measurement**: In a pressure cooker, when it explodes, the parts are propelled outward by the force of the internal pressure. The maximum distance traveled by these parts can provide insights into the energy released during the explosion.
- **Relationship to Fermi's Method**: Similar to how Fermi used the distance the confetti traveled to gauge the bomb's yield, assessing the maximum distance of the cooker parts can help estimate the minimum internal pressure. The farther the objects are scattered, the higher the initial pressure must have been to cause such an explosion.

Comparison with Other Options
- **Option B**: While measuring the distance covered by firecracker fragments may provide some information about its potency, it lacks a direct correlation to a specific measurable quantity like internal pressure.
- **Option C**: Measuring the length of a crack made by an earthquake does not directly correlate to an average policy; it is more qualitative than quantitative.
- **Option D**: The volume of water in a tank cannot be accurately deduced from the distance of the water stream, as factors like flow rate and pressure are not accounted for.

Conclusion
In summary, option 'A' aligns best with Fermi's method of intuitive measurement by establishing a clear relationship between an observable event (distance traveled) and an underlying physical quantity (pressure). This reflects the core principle of deriving meaningful estimates from simple observations.
Attention CAT Students!
To make sure you are not studying endlessly, EduRev has designed CAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in CAT.
Explore Courses for CAT exam

Similar CAT Doubts

Directions for Questions Analyse the following passage and provide appropriate answers. An example of a scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind To a quantity he wanted to measure. The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a Fermi question was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?

Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Quick estimate, as per Fermi, is most useful in

Directions for Questions Analyse the following passage and provide appropriate answers. An example of a scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind To a quantity he wanted to measure. The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a Fermi question was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Quick estimate, as per Fermi, is most useful in

Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Given below are some statements that attempt to capture the central idea of the passage:1. It is useful to estimate; even when the exact answer is known.2. It is possible to estimate any physical quantity.3. It is possible to estimate the number of units of a newly launched car that can be sold in a city4. Fermi was a genius.Q. Which of the following statements (s) best captures the central idea?

Directions for Questions Analyse the following passage and provide appropriate answers. An example of a scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wav e), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind To a quantity he wanted to measure. The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a Fermi question was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Given below are some statements that attempt to capture the central idea of the passage:1. It is useful to estimate; even when the exact answer is known.2. It is possible to estimate any physical quantity.3. It is possible to estimate the number of units of a newly launched car that can be sold in a city4. Fermi was a genius.Which of the following statements (s) best captures the central idea?

Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer?
Question Description
Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? for CAT 2024 is part of CAT preparation. The Question and answers have been prepared according to the CAT exam syllabus. Information about Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? covers all topics & solutions for CAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer?.
Solutions for Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for CAT. Download more important topics, notes, lectures and mock test series for CAT Exam by signing up for free.
Here you can find the meaning of Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer?, a detailed solution for Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? has been provided alongside types of Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Directions: Analyse the following passage and provide appropriate answers.An example of scientist who could measure without instruments is Enrico Fermi (1901-1954), a physicist who won the Nobel Prize in physics in 1938. He had a Well-developed knack for intuitive, even casual-sounding measurements. One renowned example of his measurement skills was demonstrated at the first detonation of the atom bomb, the Trinity Test site, on July 16, 1945, where he was one of the atomic scientists observing from base camp. While final adjustments were being made to instruments used to measure the yield of the blast, Fermi was making confetti out of a page of notebook paper. As the wind from the initial blast wave began to blow through the camp, he slowly dribbled the confetti into the air, observing how far back it was scattered by the blast (taking the farthest scattered pieces as being the peak of the pressure wave), Fermi concluded that the yield must be greater than 10 kilotons. This would have been news, since other initial observers of the blast did not know that lower limit. After much analysis of the instrument readings, the final yield estimate was determined to be 18.6 kilotons. Like Eratosthenes7 Fermi was aware of a rule relating one simple observation-the scattering of confetti in the Wind-to a quantity he wanted to measure.The value of quick estimates was something Fermi was familiar with throughout his career. He was famous for teaching his students skills at approximation of fanciful-sounding quantities that, at first glance, they might presume they knew nothing about. The best-known example of such a “Fermi question” was Fermi asking his students to estimate the number of piano tuners in Chicago, when no one knows the answer. His students-science and engineering majors-would begin by saying that they could not possibly know anything about such a quantity. Of course, some solutions would be to simply do a count of every piano tuner perhaps by looking up advertisements, checking with a licensing agency of some sort, and so on. But Fermi was trying to teach his students how to solve problems where the ability to confirm the results would not be so easy. He wanted them to figure out that they knew something about the quantity in question.Q. Suppose you apply the same logic as Fermi applied to confetti, which of the following statements would be the most appropriate?a)You can calculate the minimum pressure inside the cooker by calculating the maximum distance travelled by any of its parts after it explodes.b)You can calculate the average potency of a fire cracker by calculating the distance covered by one of its bigger fragments.c)You can easily find out the average policy of an earthquake by measuring the length of a crack it makes on the surface of the earth.d)You can calculate the exact volume of water stored in a tank by measuring the distance covered by the stream of water coming out of the tap fixed on the lower corner of the tank.e)All the above conclusions can be drawn.Correct answer is option 'A'. Can you explain this answer? tests, examples and also practice CAT tests.
Explore Courses for CAT exam

Top Courses for CAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev