GMAT Exam  >  GMAT Questions  >  Directions: Read the Passage carefully and an... Start Learning for Free
Directions: Read the Passage carefully and answer the question as follow.
The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.
It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.
Q. The passage implies that scientists should refrain from doing which of the following?
  • a)
    Coming up with theoretical definitions without judging the practical veracity of the same.
  • b)
    Considering concepts in the field of Physics in absolute terms.
  • c)
    Using vague terms while defining a concept.
  • d)
    Relying on historical sources when trying to define a term.
  • e)
    Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.
Correct answer is option 'B'. Can you explain this answer?
Most Upvoted Answer
Directions: Read the Passage carefully and answer the question as foll...
The entire gist of the passage is that certain concepts in physics are relative and cannot be described in absolute terms.
(B) follows best from this and is the correct answer.
(A) Sounds logical but is not supported by the passage.
(C) The fact that a term can be interpreted differently by different people does not really imply that it is vague. A term can be called vague when a person finds it confusing or unclear but in this case the observers are very clear on what they are observing (straight line or parabola); it’s the observations themselves that are different based on the positions of the individuals.
(D) The passage does not concern itself with the history of anything.
(E) Opposite. The passage suggests that scientists should actually do this and not ‘refrain’ from doing this.
Free Test
Community Answer
Directions: Read the Passage carefully and answer the question as foll...
Explanation:

Considering concepts in the field of Physics in absolute terms:
- The passage suggests that scientists should refrain from considering concepts in the field of Physics in absolute terms.
- It argues that terms such as "position" and "space" should not be defined in an absolute sense, but rather in a relative sense.
- By using the example of the stone dropped from a moving train, the passage demonstrates that the trajectory of the stone is relative to the body of reference (train or ground), rather than existing independently.

Using vague terms while defining a concept:
- The passage also advises against using vague terms while defining a concept, such as the term "space" which the author acknowledges is difficult to conceive.
- Instead of using vague terms, the author suggests replacing them with more precise and practical descriptions, such as "motion relative to a practically rigid body of reference."
Therefore, the correct answer is option B, as the passage implies that scientists should refrain from considering concepts in the field of Physics in absolute terms.
Attention GMAT Students!
To make sure you are not studying endlessly, EduRev has designed GMAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in GMAT.
Explore Courses for GMAT exam

Top Courses for GMAT

Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer?
Question Description
Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer?.
Solutions for Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer?, a detailed solution for Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? has been provided alongside types of Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Directions: Read the Passage carefully and answer the question as follow.The purpose of mechanics is to describe how bodies change their position in space with time. I should load my conscience with grave sins against the sacred spirit of lucidity were I to formulate the aims of mechanics in this way, without serious reflection and detailed explanations. Let us proceed to disclose these sins.It is not clear what is to be understood here by “position” and “space.” I stand at the window of a railway carriage which is travelling uniformly, and drop a stone on the embankment, without throwing it. Then, disregarding the influence of the air resistance, I see the stone descend in a straight line. A pedestrian who observes the misdeed from the footpath notices that the stone falls to earth in a parabolic curve. I now ask: Do the “positions” traversed by the stone lie “in reality” on a straight line or on a parabola? Moreover, what is meant here by motion “in space” ? From the considerations of the previous section, the answer is self-evident. In the first place we entirely shun the vague word “space,” of which, we must honestly acknowledge, we cannot form the slightest conception, and we replace it by “motion relative to a practically rigid body of reference.” The positions relative to the body of reference (railway carriage or embankment) have already been defined in detail in the preceding section. If instead of “body of reference” we insert “system of co-ordinates,” which is a useful idea for mathematical description, we are in a position to say: The stone traverses a straight line relative to a system of co-ordinates rigidly attached to the carriage, but relative to a system of co-ordinates rigidly attached to the ground (embankment) it describes a parabola. With the aid of this example it is clearly seen that there is no such thing as an independently existing trajectory, but only a trajectory relative to a particular body of reference.Q.The passage implies that scientists should refrain from doing which of the following?a)Coming up with theoretical definitions without judging the practical veracity of the same.b)Considering concepts in the field of Physics in absolute terms.c)Using vague terms while defining a concept.d)Relying on historical sources when trying to define a term.e)Attempting to define terms from the realm of Physics in the relative sense rather than in absolute terms.Correct answer is option 'B'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev