Question Description
The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? for Electrical Engineering (EE) 2024 is part of Electrical Engineering (EE) preparation. The Question and answers have been prepared
according to
the Electrical Engineering (EE) exam syllabus. Information about The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? covers all topics & solutions for Electrical Engineering (EE) 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer?.
Solutions for The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? in English & in Hindi are available as part of our courses for Electrical Engineering (EE).
Download more important topics, notes, lectures and mock test series for Electrical Engineering (EE) Exam by signing up for free.
Here you can find the meaning of The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer?, a detailed solution for The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? has been provided alongside types of The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice The rotor of a 3-phase induction motor has 0.04 Ω resistance per phase and 0.2 Ω standstill reactance per phase. An external resistance is used in the rotor circuit in order to get half of the maximum torque at starting. Neglect stator impedance. By what percentage will this external resistance change the power factor at starting?Correct answer is between '30,35'. Can you explain this answer? tests, examples and also practice Electrical Engineering (EE) tests.