Question Description
An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? for Mechanical Engineering 2024 is part of Mechanical Engineering preparation. The Question and answers have been prepared
according to
the Mechanical Engineering exam syllabus. Information about An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? covers all topics & solutions for Mechanical Engineering 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer?.
Solutions for An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? in English & in Hindi are available as part of our courses for Mechanical Engineering.
Download more important topics, notes, lectures and mock test series for Mechanical Engineering Exam by signing up for free.
Here you can find the meaning of An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer?, a detailed solution for An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? has been provided alongside types of An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice An engine running on an air standard Otto cycle has a displacement volume 250 cm3 and a clearance volume 35.7 cm3. The pressure and temperature at the beginning of the compression process are 100 kPa and 300 K, respectively. Heat transfer during constant-volume heat addition process is 800 kJ/kg. The specific heat at constant volume is 0.718 kJ/kg.K and the ratio of specific heats at constant pressure and constant volume is 1.4. Assume the specific heats to remain constant during the cycle. The maximum pressure in the cycle is ______ kPa (round off to the nearest integer).Correct answer is '4809.17'. Can you explain this answer? tests, examples and also practice Mechanical Engineering tests.