Question Description
Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared
according to
the JEE exam syllabus. Information about Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? covers all topics & solutions for JEE 2024 Exam.
Find important definitions, questions, meanings, examples, exercises and tests below for Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer?.
Solutions for Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? in English & in Hindi are available as part of our courses for JEE.
Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of
Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer?, a detailed solution for Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? has been provided alongside types of Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? theory, EduRev gives you an
ample number of questions to practice Consider an arithmetic series and a geometric series having four initial terms from the set {11, 8, 21, 16, 26, 32, 4}. If the last terms of these series are the maximum possible four-digit numbers, then the number of common terms in these two series is equal to ______.Correct answer is '3'. Can you explain this answer? tests, examples and also practice JEE tests.