SAT Exam  >  SAT Questions  >  Individuals of the roughly 2,000 species in t... Start Learning for Free
Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.
The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.
To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.
Q. The author’s tone in the underlined portion of the passage is best described as __________.
  • a)
    hopeful and motivated
  • b)
    disappointed and critical
  • c)
    enthusiastic and surprised
  • d)
    informed and precise
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
Individuals of the roughly 2,000 species in the family Lampyridae incl...
indication that the author has any positive or negative emotions toward these figures. As the reader, it might be natural to feel hopeful or motivated to improve the efficiency of our everyday lights to match that of the fireflies, but be careful not to extrapolate unless told to do so.
Explore Courses for SAT exam

Similar SAT Doubts

Questions based on the following passage and supplementary material.This passage is from David Biello, “Can Tiny Plankton Help Reverse Climate Change?” ©2015 by David Biello. Originally published in Aeon (http://aeon.co/) on July1, 2014.The forbidding sea known as the SouthernOcean surrounds Antarctica with a chillycurrent, locking it in a deep freeze like a moatreaching to the ocean floor. Dangerous icebergs(5) hide in its gloom. Its churning swells sometimesserve up freak waves that can easily flip ships.In this violent place Victor Smetacek hopes totransform Earth’s atmosphere.Since the 1980s, Smetacek has studied the(10) plankton—tiny animals, protists, algae, andbacteria—that fill the Southern Ocean. Planktonis our planet’s most prolific life form, providingthe base layer of the global food chain.Much of the oxygen we breathe comes(15) from just one species of cyanobacteria,Prochlorococcus, which has dominated Earth’soxygen production for the last 2.4 billion years.These minuscule marine plants produce moreoxygen than all of the planet’s forests combined.(20) Their steady breathing is limited only by a lackof key nutritional elements. If enough of thesenutrients are supplied by dust off a continent orfertilizer run-off from farm fields, the oceans canproduce blooms that can be seen from space.(25) Many of these plankton pastures are heldback by iron shortages, especially in places thatare largely cut off from continental dust and dirt.With access to more iron, the plankton wouldproliferate and siphon more and more planet-(30) heating CO2 from the atmosphere. Back in 1988,the late John Martin, then an oceanographer atthe Moss Landing Marine Observatory, said: “Give mea half tanker of iron, and I will give you an ice age.”Iron fertilization could potentially sequester(35) as much as one billion metric tons of carbondioxide annually, and keep it deep in the ocean forcenturies. That is slightly more than the CO2 outputof the German economy, and roughly one-eighthof humanity’s entire greenhouse gas output.(40) Using an iron sulphate waste sold as alawn treatment in Germany, Smetacek and hiscolleagues set out in 2004 to supply the planktonwith the nutrient they needed. Fertilizing thewaters, they hoped, would promote blooms to help(45) sea life thrive all the way up the food chain, evento whale populations, which were still recoveringfrom overhunting. And, more importantly, theuneaten plankton could suck out CO2 from the airuntil they died and sank to the sea floor, thereby(50) providing natural carbon sequestration.Smetacek’s ship dumped enough of the ironsulfate to raise the iron concentration by 0.01gram per square meter in a 167-square-kilometerself-contained swirl of water that could maintain(55) its shape for weeks or even months. Smetacek andhis crew waited, as he described in his log, “withthe fatalistic patience of the farmer, watching thecrop develop in the painstakingly selected field.”Over the course of two weeks, thirteen species of(60) diatoms bloomed down to depths of 100 meters.Then the bloom began to die in large enoughnumbers to overwhelm natural systems of decay,falling like snow to depths of 500 meters. Abouthalf of them continued on even further, sinking(65) more than 3,000 meters to the sea floor.For two weeks, Smetacek induced carbonto fall to the sea floor at the highest rate everobserved—34 times faster than normal.This marine tinkering could help buffer the(70) ever-increasing concentrations of CO2 in theatmosphere, concentrations that have touched400 parts-per-million, levels never beforeexperienced in the history of our species.Yet environmentalists were outraged by(75) Smetacek’s project. Activists stoked fears thatthe iron could lead to a toxic algal bloom or a“dead zone” like the one created each summerin the Gulf of Mexico, where the fertilizers fromMidwestern cornfields gush out of the Mississippi(80) river, stoking algal blooms that then die and areconsumed by other microbes, which consumeall the available oxygen in the surroundingwaters, causing fish to flee and suffocating crabsand worms. As a result of these objections, there(85) havebeen no scientific research cruises since2009, and none are planned for the immediatefuture.Smetacek suggests that commerce might bethe only way to motivate further research into(90) iron fertilization. Replenishing missing krill, andthe whales it supports, could be the best route tobroader acceptance of the practice.The ocean is no longer a vast, unknowablewilderness. Instead, it’s a viable arena for(95) large-scale manipulation of the planetaryenvironment. We have tamed the heaving, alienworld of the sea and, though doing so can makeus uncomfortable, in the end it might undo a greatdeal of the damage we have already done.Q.The passage suggests that iron fertilization could potentially help the whale population primarily by

Question is based on the following passage.This passage is adapted from Daniel Chamovitz, What a Plant Knows: A Field Guide to the Senses. ©2012 by Daniel Chamovitz.The Venus flytrap [Dionaea muscipula] needs toknow when an ideal meal is crawling across its leaves.Closing its trap requires a huge expense of energy,and reopening the trap can take several hours, so5 Dionaea only wants to spring closed when it’s surethat the dawdling insect visiting its surface is largeenough to be worth its time. The large black hairs ontheir lobes allow the Venus flytraps to literally feeltheir prey, and they act as triggers that spring the10 trap closed when the proper prey makes its wayacross the trap. If the insect touches just one hair, thetrap will not spring shut; but a large enough bug willlikely touch two hairs within about twenty seconds,and that signal springs the Venus flytrap into action.15 We can look at this system as analogous toshort-term memory. First, the flytrap encodes theinformation (forms the memory) that something (itdoesn’t know what) has touched one of its hairs.Then it stores this information for a number of20seconds (retains the memory) and finally retrievesthis information (recalls the memory) once a secondhair is touched. If a small ant takes a while to getfrom one hair to the next, the trap will have forgottenthe first touch by the time the ant brushes up against25the next hair. In other words, it loses the storage ofthe information, doesn’t close, and the anthappily meanders on. How does the plant encodeand store the information from the unassumingbug’s encounter with the first hair? How does it30 remember the first touch in order to react upon thesecond?Scientists have been puzzled by these questionsever since John Burdon-Sanderson’s early report onthe physiology of the Venus flytrap in 1882. A35 century later, Dieter Hodick and Andreas Sievers atthe University of Bonn in Germany proposed thatthe flytrap stored information regarding how manyhairs have been touched in the electric charge of itsleaf. Their model is quite elegant in its simplicity.40In their studies, they discovered that touching atrigger hair on the Venus flytrap causes an electricaction potential [a temporary reversal in theelectrical polarity of a cell membrane] thatinduces calcium channels to open in the trap (this45coupling of action potentials and the opening ofcalcium channels is similar to the processes thatoccur during communication between humanneurons), thus causing a rapid increase in theconcentration of calcium ions.50They proposed that the trap requires a relativelyhigh concentration of calcium in order to closeand that a single action potential from just onetrigger hair being touched does not reach this level.Therefore, a second hair needs to be stimulated to55push the calcium concentration over this thresholdand spring the trap. The encoding of the informationrequires maintaining a high enough level of calciumso that a second increase (triggered by touching thesecond hair) pushes the total concentration of60calcium over the threshold. As the calcium ionconcentrations dissipate over time, if the secondtouch and potential don’t happen quickly, the finalconcentration after the second trigger won’t be highenough to close the trap, and the memory is lost.65Subsequent research supports this model.Alexander Volkov and his colleagues at OakwoodUniversity in Alabama first demonstrated that it isindeed electricity that causes the Venus flytrap toclose. To test the model they rigged up very fine70electrodes and applied an electrical current to theopen lobes of the trap. This made the trap closewithout any direct touch to its trigger hairs (whilethey didn’t measure calcium levels, the currentlikely led to increases). When they modified this75experiment by altering the amount of electricalcurrent, Volkov could determine the exact electricalcharge needed for the trap to close. As long asfourteen microcoulombs—a tiny bit more than thestatic electricity generated by rubbing two balloons80together—flowed between the two electrodes, thetrap closed. This could come as one large burst or asa series of smaller charges within twenty seconds. If ittook longer than twenty seconds to accumulate thetotal charge, the trap would remain open.Q. Which choice describes a scenario in which Hodick and Sievers’s model predicts that a Venus flytrap will NOT close around an insect?

Question is based on the following passage.This passage is adapted from Daniel Chamovitz, What a Plant Knows: A Field Guide to the Senses. ©2012 by Daniel Chamovitz.The Venus flytrap [Dionaea muscipula] needs toknow when an ideal meal is crawling across its leaves.Closing its trap requires a huge expense of energy,and reopening the trap can take several hours, so5 Dionaea only wants to spring closed when it’s surethat the dawdling insect visiting its surface is largeenough to be worth its time. The large black hairs ontheir lobes allow the Venus flytraps to literally feeltheir prey, and they act as triggers that spring the10 trap closed when the proper prey makes its wayacross the trap. If the insect touches just one hair, thetrap will not spring shut; but a large enough bug willlikely touch two hairs within about twenty seconds,and that signal springs the Venus flytrap into action.15 We can look at this system as analogous toshort-term memory. First, the flytrap encodes theinformation (forms the memory) that something (itdoesn’t know what) has touched one of its hairs.Then it stores this information for a number of20seconds (retains the memory) and finally retrievesthis information (recalls the memory) once a secondhair is touched. If a small ant takes a while to getfrom one hair to the next, the trap will have forgottenthe first touch by the time the ant brushes up against25the next hair. In other words, it loses the storage ofthe information, doesn’t close, and the anthappily meanders on. How does the plant encodeand store the information from the unassumingbug’s encounter with the first hair? How does it30 remember the first touch in order to react upon thesecond?Scientists have been puzzled by these questionsever since John Burdon-Sanderson’s early report onthe physiology of the Venus flytrap in 1882. A35 century later, Dieter Hodick and Andreas Sievers atthe University of Bonn in Germany proposed thatthe flytrap stored information regarding how manyhairs have been touched in the electric charge of itsleaf. Their model is quite elegant in its simplicity.40In their studies, they discovered that touching atrigger hair on the Venus flytrap causes an electricaction potential [a temporary reversal in theelectrical polarity of a cell membrane] thatinduces calcium channels to open in the trap (this45coupling of action potentials and the opening ofcalcium channels is similar to the processes thatoccur during communication between humanneurons), thus causing a rapid increase in theconcentration of calcium ions.50They proposed that the trap requires a relativelyhigh concentration of calcium in order to closeand that a single action potential from just onetrigger hair being touched does not reach this level.Therefore, a second hair needs to be stimulated to55push the calcium concentration over this thresholdand spring the trap. The encoding of the informationrequires maintaining a high enough level of calciumso that a second increase (triggered by touching thesecond hair) pushes the total concentration of60calcium over the threshold. As the calcium ionconcentrations dissipate over time, if the secondtouch and potential don’t happen quickly, the finalconcentration after the second trigger won’t be highenough to close the trap, and the memory is lost.65Subsequent research supports this model.Alexander Volkov and his colleagues at OakwoodUniversity in Alabama first demonstrated that it isindeed electricity that causes the Venus flytrap toclose. To test the model they rigged up very fine70electrodes and applied an electrical current to theopen lobes of the trap. This made the trap closewithout any direct touch to its trigger hairs (whilethey didn’t measure calcium levels, the currentlikely led to increases). When they modified this75experiment by altering the amount of electricalcurrent, Volkov could determine the exact electricalcharge needed for the trap to close. As long asfourteen microcoulombs—a tiny bit more than thestatic electricity generated by rubbing two balloons80together—flowed between the two electrodes, thetrap closed. This could come as one large burst or asa series of smaller charges within twenty seconds. If ittook longer than twenty seconds to accumulate thetotal charge, the trap would remain open.Q. According to the passage, which statement best explains why the Venus flytrap requires a second trigger hair to be touched within a short amount of time in order for its trap to close?

Question is based on the following passage.This passage is adapted from Daniel Chamovitz, What a Plant Knows: A Field Guide to the Senses. ©2012 by Daniel Chamovitz.The Venus flytrap [Dionaea muscipula] needs toknow when an ideal meal is crawling across its leaves.Closing its trap requires a huge expense of energy,and reopening the trap can take several hours, so5 Dionaea only wants to spring closed when it’s surethat the dawdling insect visiting its surface is largeenough to be worth its time. The large black hairs ontheir lobes allow the Venus flytraps to literally feeltheir prey, and they act as triggers that spring the10 trap closed when the proper prey makes its wayacross the trap. If the insect touches just one hair, thetrap will not spring shut; but a large enough bug willlikely touch two hairs within about twenty seconds,and that signal springs the Venus flytrap into action.15 We can look at this system as analogous toshort-term memory. First, the flytrap encodes theinformation (forms the memory) that something (itdoesn’t know what) has touched one of its hairs.Then it stores this information for a number of20seconds (retains the memory) and finally retrievesthis information (recalls the memory) once a secondhair is touched. If a small ant takes a while to getfrom one hair to the next, the trap will have forgottenthe first touch by the time the ant brushes up against25the next hair. In other words, it loses the storage ofthe information, doesn’t close, and the anthappily meanders on. How does the plant encodeand store the information from the unassumingbug’s encounter with the first hair? How does it30 remember the first touch in order to react upon thesecond?Scientists have been puzzled by these questionsever since John Burdon-Sanderson’s early report onthe physiology of the Venus flytrap in 1882. A35 century later, Dieter Hodick and Andreas Sievers atthe University of Bonn in Germany proposed thatthe flytrap stored information regarding how manyhairs have been touched in the electric charge of itsleaf. Their model is quite elegant in its simplicity.40In their studies, they discovered that touching atrigger hair on the Venus flytrap causes an electricaction potential [a temporary reversal in theelectrical polarity of a cell membrane] thatinduces calcium channels to open in the trap (this45coupling of action potentials and the opening ofcalcium channels is similar to the processes thatoccur during communication between humanneurons), thus causing a rapid increase in theconcentration of calcium ions.50They proposed that the trap requires a relativelyhigh concentration of calcium in order to closeand that a single action potential from just onetrigger hair being touched does not reach this level.Therefore, a second hair needs to be stimulated to55push the calcium concentration over this thresholdand spring the trap. The encoding of the informationrequires maintaining a high enough level of calciumso that a second increase (triggered by touching thesecond hair) pushes the total concentration of60calcium over the threshold. As the calcium ionconcentrations dissipate over time, if the secondtouch and potential don’t happen quickly, the finalconcentration after the second trigger won’t be highenough to close the trap, and the memory is lost.65Subsequent research supports this model.Alexander Volkov and his colleagues at OakwoodUniversity in Alabama first demonstrated that it isindeed electricity that causes the Venus flytrap toclose. To test the model they rigged up very fine70electrodes and applied an electrical current to theopen lobes of the trap. This made the trap closewithout any direct touch to its trigger hairs (whilethey didn’t measure calcium levels, the currentlikely led to increases). When they modified this75experiment by altering the amount of electricalcurrent, Volkov could determine the exact electricalcharge needed for the trap to close. As long asfourteen microcoulombs—a tiny bit more than thestatic electricity generated by rubbing two balloons80together—flowed between the two electrodes, thetrap closed. This could come as one large burst or asa series of smaller charges within twenty seconds. If ittook longer than twenty seconds to accumulate thetotal charge, the trap would remain open.Q. The use of the phrases “dawdling insect” (line 6), “happily meanders” (line 27), and “unassuming bug’s encounter” (lines 28-29) in the first two paragraphs establishes a tone that is

Question is based on the following passage.This passage is adapted from Daniel Chamovitz, What a Plant Knows: A Field Guide to the Senses. ©2012 by Daniel Chamovitz.The Venus flytrap [Dionaea muscipula] needs toknow when an ideal meal is crawling across its leaves.Closing its trap requires a huge expense of energy,and reopening the trap can take several hours, so5 Dionaea only wants to spring closed when it’s surethat the dawdling insect visiting its surface is largeenough to be worth its time. The large black hairs ontheir lobes allow the Venus flytraps to literally feeltheir prey, and they act as triggers that spring the10 trap closed when the proper prey makes its wayacross the trap. If the insect touches just one hair, thetrap will not spring shut; but a large enough bug willlikely touch two hairs within about twenty seconds,and that signal springs the Venus flytrap into action.15 We can look at this system as analogous toshort-term memory. First, the flytrap encodes theinformation (forms the memory) that something (itdoesn’t know what) has touched one of its hairs.Then it stores this information for a number of20seconds (retains the memory) and finally retrievesthis information (recalls the memory) once a secondhair is touched. If a small ant takes a while to getfrom one hair to the next, the trap will have forgottenthe first touch by the time the ant brushes up against25the next hair. In other words, it loses the storage ofthe information, doesn’t close, and the anthappily meanders on. How does the plant encodeand store the information from the unassumingbug’s encounter with the first hair? How does it30 remember the first touch in order to react upon thesecond?Scientists have been puzzled by these questionsever since John Burdon-Sanderson’s early report onthe physiology of the Venus flytrap in 1882. A35 century later, Dieter Hodick and Andreas Sievers atthe University of Bonn in Germany proposed thatthe flytrap stored information regarding how manyhairs have been touched in the electric charge of itsleaf. Their model is quite elegant in its simplicity.40In their studies, they discovered that touching atrigger hair on the Venus flytrap causes an electricaction potential [a temporary reversal in theelectrical polarity of a cell membrane] thatinduces calcium channels to open in the trap (this45coupling of action potentials and the opening ofcalcium channels is similar to the processes thatoccur during communication between humanneurons), thus causing a rapid increase in theconcentration of calcium ions.50They proposed that the trap requires a relativelyhigh concentration of calcium in order to closeand that a single action potential from just onetrigger hair being touched does not reach this level.Therefore, a second hair needs to be stimulated to55push the calcium concentration over this thresholdand spring the trap. The encoding of the informationrequires maintaining a high enough level of calciumso that a second increase (triggered by touching thesecond hair) pushes the total concentration of60calcium over the threshold. As the calcium ionconcentrations dissipate over time, if the secondtouch and potential don’t happen quickly, the finalconcentration after the second trigger won’t be highenough to close the trap, and the memory is lost.65Subsequent research supports this model.Alexander Volkov and his colleagues at OakwoodUniversity in Alabama first demonstrated that it isindeed electricity that causes the Venus flytrap toclose. To test the model they rigged up very fine70electrodes and applied an electrical current to theopen lobes of the trap. This made the trap closewithout any direct touch to its trigger hairs (whilethey didn’t measure calcium levels, the currentlikely led to increases). When they modified this75experiment by altering the amount of electricalcurrent, Volkov could determine the exact electricalcharge needed for the trap to close. As long asfourteen microcoulombs—a tiny bit more than thestatic electricity generated by rubbing two balloons80together—flowed between the two electrodes, thetrap closed. This could come as one large burst or asa series of smaller charges within twenty seconds. If ittook longer than twenty seconds to accumulate thetotal charge, the trap would remain open.Q. The primary purpose of the passage is to

Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer?
Question Description
Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? for SAT 2025 is part of SAT preparation. The Question and answers have been prepared according to the SAT exam syllabus. Information about Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? covers all topics & solutions for SAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer?.
Solutions for Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for SAT. Download more important topics, notes, lectures and mock test series for SAT Exam by signing up for free.
Here you can find the meaning of Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer?, a detailed solution for Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? has been provided alongside types of Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Individuals of the roughly 2,000 species in the family Lampyridae include those insects capable of producing bioluminescent light through a specific metabolic process. Though commonly referred to as fireflies or lightning bugs, these idiosyncratic creatures are more accurately categorized as winged beetles. Like their amphibian predators, most fireflies are crepuscular and are thus largely reliant on their bioluminescence to attract mates, find food, and warn predators of their potential poisonousness. Fireflies are known not to be desirable prey animals for most predators due to the presence of potentially harmful substances in their blood and bitter taste. During their larval stage, bioluminescence serves as the primary defense mechanism to fend off those predators. The diet of most fireflies includes a mixture of nectar, pollen, fireflies, and other insects. It has been shown that different species of fireflies exhibit unique bioluminescence patterns when attracting mates. For example, males of the species P. pyralis (the state insect of Tennessee) use flashing patterns during courtship to attract potential mates. If a female elects to mate with the male, she will respond by reciprocating with a flash of her own. However, the males must beware, as females of other species such as P. pensylvanica can mimic these patterns to deceive, attract, and eat the males.The biochemical reaction by which fireflies produce light occurs inside a specialized organ in their lower abdomen. This light-emitting organ utilizes the molecule luciferin, which is responsible for the production of visible light. In the presence of oxygen, magnesium ions, and the energy-rich molecule adenosine triphosphate (ATP), the enzyme luciferase converts luciferin into oxyluciferin, which emits light due to being in an electronically excited state. Upon emitting light, oxyluciferin is recycled and reconverted to luciferin so the process may continue. As with any biochemical process, the rate and capacity for bioluminescence in fireflies is dictated by the concentration of inputs as well as the rate at which byproducts are recycled. Scientists still do not fully understand how fireflies are able to produce bioluminescence with upwards of 80-90% energy efficiency. In comparison, the average incandescent light bulbs and LED lights emit only about 10% and 20% of their total electrical energy input as light, respectively. Since the first law of thermodynamics states that the total energy of the universe is constant and energy can neither be created nor destroyed, heat is the major byproduct in the reactions mentioned above.To further study the interaction of firefly luciferase with its substrate, a student designs an experiment testing the rate at which the molecules involved are recycled. The student gathers 100 fireflies and separates them randomly into five equal experimental groups. Group A is not given any treatment and each subsequent group of fireflies is administered increasing concentrations of luciferin. Each group of fireflies is then released into separate pitch-black rooms that mimic the fireflies’ natural habitat. These rooms also contain light meters that measure the intensity of light emitted by the group of 20 fireflies as a whole. The results of this experiment are shown in Table 1.Q.The author’s tone in the underlined portion of the passage is best described as __________.a)hopeful and motivatedb)disappointed and criticalc)enthusiastic and surprisedd)informed and preciseCorrect answer is option 'D'. Can you explain this answer? tests, examples and also practice SAT tests.
Explore Courses for SAT exam

Top Courses for SAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev