GRE Exam  >  GRE Questions  >  PASSAGE:The fossil remain of the first flying... Start Learning for Free
PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries.  How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.
Perhaps the least controversial assertion about the pterosaurs is that they were reptiles.  Their skulls, pelvises, and hind feet are reptilian.  The anatomy of their wings suggests that they did not evolve into the class of birds.  In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane.  The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features.  If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.
The pterosaurs resembled both birds and bats in their overall structure and proportions.  This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight.  In the birds, however, these bones are reinforced more massively by internal struts.
Although scales typically cover reptiles, the pterosaurs probably had hairy coats.  T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature.  Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight.  The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.
Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves.  Each hypothesis has its difficulties.  The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight.  The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings.  The birds calls for high waves to channels updrafts.  The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.
Q. It can be inferred from the passage that scientists now generally agree that the 
  • a)
    enormous wingspan of the pterosaurs enable them to fly great distances 
  • b)
    structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to bats 
  • c)
    fossil remains of the pterosaurs reveal how they solved the problem of powered flight 
  • d)
    pterosaurs were reptiles 
  • e)
    pterosaurs walked on all fours.
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
PASSAGE:The fossil remain of the first flying vertebrates, the pterosa...
Understanding the Correct Answer
The passage provides insights into the classification and characteristics of pterosaurs, leading to the conclusion that they were reptiles.
Key Points Supporting Option D
- Reptilian Features:
- The passage states that pterosaurs had skulls, pelvises, and hind feet that are distinctly reptilian. This anatomical evidence strongly supports their classification as reptiles.
- Wing Anatomy:
- The structure of pterosaur wings, which involved a greatly elongated fourth finger supporting a wing-like membrane, differentiates them from birds. This unique adaptation aligns them with reptilian traits rather than avian.
- Hairy Coats:
- While they likely had hair-like coverings rather than scales, this does not contradict their classification as reptiles. The passage mentions that T.H. Huxley inferred they were warm-blooded, a characteristic that could apply to some reptiles.
- General Consensus:
- The text indicates that there is a consensus among scientists regarding the classification of pterosaurs as reptiles, making option D the most straightforward and widely accepted conclusion.
Elimination of Other Options
- Option A: Wingspan and Distance
- The passage does not provide evidence that their wingspan enabled them to fly great distances.
- Option B: Relationship to Bats
- While they share structural similarities, the passage does not suggest a close evolutionary relationship to bats.
- Option C: Fossil Evidence of Flight Solutions
- The passage discusses hypotheses about how they became airborne but does not confirm that fossil remains reveal these solutions.
- Option E: Walking on All Fours
- The passage does not indicate that pterosaurs walked on all fours, but rather describes their wing structure.
In summary, the evidence in the passage clearly establishes that pterosaurs are classified as reptiles, making option D the correct choice.
Attention GRE Students!
To make sure you are not studying endlessly, EduRev has designed GRE study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in GRE.
Explore Courses for GRE exam

Top Courses for GRE

PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer?
Question Description
PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? for GRE 2024 is part of GRE preparation. The Question and answers have been prepared according to the GRE exam syllabus. Information about PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? covers all topics & solutions for GRE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer?.
Solutions for PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for GRE. Download more important topics, notes, lectures and mock test series for GRE Exam by signing up for free.
Here you can find the meaning of PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer?, a detailed solution for PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? has been provided alongside types of PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice PASSAGE:The fossil remain of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hangglider and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were-reptiles or birds- are among the questions scientist have puzzled over.Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing like membrane. The other fingers were short and reptilian, with sharp claws, In birds the second finger is the principle strut of the wing, which consists primarily of features. If the pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along side of the animal’s body.The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a saving in weight. In the birds, however, these bones are reinforced more massively by internal struts.Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T.H. Huxley reasoned that flying vertebrates must have been warm – blooded because flying implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidenced that his reasoning was correct.Efforts to explain how the pterosaurs became air-borne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaur’s hind feet resembled a bat’s and could served as hooks by which the animal could bang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The birds calls for high waves to channels updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne.Q. It can be inferred from the passage that scientists now generally agree that thea)enormous wingspan of the pterosaurs enable them to fly great distancesb)structure of the skeleton of the pterosaurs suggests a close evolutionary relationship to batsc)fossil remains of the pterosaurs reveal how they solved the problem of powered flightd)pterosaurs were reptilese)pterosaurs walked on all fours.Correct answer is option 'D'. Can you explain this answer? tests, examples and also practice GRE tests.
Explore Courses for GRE exam

Top Courses for GRE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev