ACT Exam  >  ACT Questions  >  Buffer solution is destroyed when _________.a... Start Learning for Free
Buffer solution is destroyed when _________.
  • a)
    addition of weak base
  • b)
    addition of strong acid or base
  • c)
    addition of weak acid
  • d)
    addition of a salt
Correct answer is option 'A'. Can you explain this answer?
Verified Answer
Buffer solution is destroyed when _________.a)addition of weak baseb)a...
If the addition of a strong acid or base changes the pH of a buffer by unit, the buffer solution is assumed to be destroyed that is new pH = pKa ± 1; that means [salt]/[acid] or [acid]/[salt] = 10 or 1/10.
View all questions of this test
Most Upvoted Answer
Buffer solution is destroyed when _________.a)addition of weak baseb)a...
Buffer solutions are solutions that resist changes in pH when small amounts of acid or base are added to them. They are typically composed of a weak acid and its conjugate base or a weak base and its conjugate acid. The ability of a buffer solution to maintain its pH depends on the presence of both the weak acid or base and its conjugate pair.

When a weak base is added to a buffer solution, the buffer is destroyed. This is because the weak base reacts with the weak acid present in the buffer to form their respective conjugate acid and base. This reaction consumes the weak acid and weak base, disrupting the balance of the buffer system. As a result, the pH of the solution will change significantly, and the buffer will no longer be able to resist changes in pH.

The addition of a strong acid or base does not necessarily destroy a buffer solution. Strong acids and bases are completely dissociated in water and do not have conjugate pairs. Therefore, they do not participate in the buffer system. Instead, they directly change the concentration of hydrogen ions (H+) or hydroxide ions (OH-) in the solution, leading to a significant change in pH.

The addition of a weak acid to a buffer solution does not necessarily destroy the buffer. The weak acid will simply increase the concentration of its conjugate base, helping to maintain the buffer system.

The addition of a salt to a buffer solution also does not destroy the buffer. Salts are composed of cations and anions, and their presence does not significantly affect the buffer system as long as they do not react with the weak acid or base.

In summary, the buffer solution is destroyed when a weak base is added because it reacts with the weak acid in the buffer, disrupting the balance of the buffer system. The addition of a strong acid or base, weak acid, or salt does not destroy the buffer.
Explore Courses for ACT exam

Similar ACT Doubts

Directions:Read the passages and choose the best answer to each question.PassageWhen connection to a municipal water system is not feasible, wells are drilled to access ground water. Engineers employed by a company interested in developing a remote plot of land conducted studies to compare the water quality of 2 possible well locations on the land. Water quality is determined by a number of factors, including the levels of nitrates, lead, microbes, pH, “hardness” (calcium carbonat e), and alkalinity. The water samples were kept at a constant temperature of 72 F throughout the study. The results in Table 1 show the readings of each test for the two different 100 mL samples of water, as well as the ideal level, or concentration, for each chemical.The pH scale measures how acidic or basic a substance is on a scale of 0 to 14. Lower numbers indicate increasing acidity and higher numbers indicate increasing basicity.The normal pH level of groundwater systems is between 6 and 8.5. Water with a low pH (<6.5) could be acidic, soft, and corrosive, and could contain elevated levels of toxic metal that might cause premature damage to metal piping.Water with a pH > 8.5 could indicate that the water is hard.Hard water does not pose a health risk, but can cause mineral deposits on fixtures and dishes and can have a bad taste and odor.Alkalinity is the water’s capacity to resist decreases in pH level. This resistance is achieved through a process called buffering (a buffered solution resists changes in pH until the buffer is used up). Alkalinity of natural water is determined by the soil and bedrock through which it passes. The main sources for natural alkalinity are rocks that contain carbonate, bicarbonate, and hydroxide compounds. These compounds, however, also cause hardness, which is less desirable in a drinking source. To illustrate the affect of alkalinity on pH stability, acid was added to two 100 milliliters sample solutions that initially had a pH of 6.5. The solution in Figure 1A had an alkalinity level of 200 mg/L while the solution in Figure 1B tested at zero alkalinity. The pH of the two solutions was recorded after every addition of acid and the results are shown in the figures below.Q.An ideal alkalinity level prevents pH levels from becoming too low. Which statement is best supported by this fact? When testing drinking water

Directions:Read the passages and choose the best answer to each question.PassageWhen connection to a municipal water system is not feasible, wells are drilled to access ground water. Engineers employed by a company interested in developing a remote plot of land conducted studies to compare the water quality of 2 possible well locations on the land. Water quality is determined by a number of factors, including the levels of nitrates, lead, microbes, pH, “hardness” (calcium carbonat e), and alkalinity. The water samples were kept at a constant temperature of 72 F throughout the study. The results in Table 1 show the readings of each test for the two different 100 mL samples of water, as well as the ideal level, or concentration, for each chemical.The pH scale measures how acidic or basic a substance is on a scale of 0 to 14. Lower numbers indicate increasing acidity and higher numbers indicate increasing basicity.The normal pH level of groundwater systems is between 6 and 8.5. Water with a low pH (<6.5) could be acidic, soft, and corrosive, and could contain elevated levels of toxic metal that might cause premature damage to metal piping.Water with a pH > 8.5 could indicate that the water is hard.Hard water does not pose a health risk, but can cause mineral deposits on fixtures and dishes and can have a bad taste and odor.Alkalinity is the water’s capacity to resist decreases in pH level. This resistance is achieved through a process called buffering (a buffered solution resists changes in pH until the buffer is used up). Alkalinity of natural water is determined by the soil and bedrock through which it passes. The main sources for natural alkalinity are rocks that contain carbonate, bicarbonate, and hydroxide compounds. These compounds, however, also cause hardness, which is less desirable in a drinking source. To illustrate the affect of alkalinity on pH stability, acid was added to two 100 milliliters sample solutions that initially had a pH of 6.5. The solution in Figure 1A had an alkalinity level of 200 mg/L while the solution in Figure 1B tested at zero alkalinity. The pH of the two solutions was recorded after every addition of acid and the results are shown in the figures below.Q.Suppose chemicals could be added to treat the high iron levels in either sample. The chemical additive would be safe to use in Sample 2 and not safe to use in Sample 1 if

Directions:Read the passages and choose the best answer to each question.PassageWhen connection to a municipal water system is not feasible, wells are drilled to access ground water. Engineers employed by a company interested in developing a remote plot of land conducted studies to compare the water quality of 2 possible well locations on the land. Water quality is determined by a number of factors, including the levels of nitrates, lead, microbes, pH, “hardness” (calcium carbonat e), and alkalinity. The water samples were kept at a constant temperature of 72 F throughout the study. The results in Table 1 show the readings of each test for the two different 100 mL samples of water, as well as the ideal level, or concentration, for each chemical.The pH scale measures how acidic or basic a substance is on a scale of 0 to 14. Lower numbers indicate increasing acidity and higher numbers indicate increasing basicity.The normal pH level of groundwater systems is between 6 and 8.5. Water with a low pH (<6.5) could be acidic, soft, and corrosive, and could contain elevated levels of toxic metal that might cause premature damage to metal piping.Water with a pH > 8.5 could indicate that the water is hard.Hard water does not pose a health risk, but can cause mineral deposits on fixtures and dishes and can have a bad taste and odor.Alkalinity is the water’s capacity to resist decreases in pH level. This resistance is achieved through a process called buffering (a buffered solution resists changes in pH until the buffer is used up). Alkalinity of natural water is determined by the soil and bedrock through which it passes. The main sources for natural alkalinity are rocks that contain carbonate, bicarbonate, and hydroxide compounds. These compounds, however, also cause hardness, which is less desirable in a drinking source. To illustrate the affect of alkalinity on pH stability, acid was added to two 100 milliliters sample solutions that initially had a pH of 6.5. The solution in Figure 1A had an alkalinity level of 200 mg/L while the solution in Figure 1B tested at zero alkalinity. The pH of the two solutions was recorded after every addition of acid and the results are shown in the figures below.Q.Based on the test results, Sample 2 is acceptable as a water source as long as the developers

Directions:Read the passages and choose the best answer to each question.PassageWhen connection to a municipal water system is not feasible, wells are drilled to access ground water. Engineers employed by a company interested in developing a remote plot of land conducted studies to compare the water quality of 2 possible well locations on the land. Water quality is determined by a number of factors, including the levels of nitrates, lead, microbes, pH, “hardness” (calcium carbonat e), and alkalinity. The water samples were kept at a constant temperature of 72 F throughout the study. The results in Table 1 show the readings of each test for the two different 100 mL samples of water, as well as the ideal level, or concentration, for each chemical.The pH scale measures how acidic or basic a substance is on a scale of 0 to 14. Lower numbers indicate increasing acidity and higher numbers indicate increasing basicity.The normal pH level of groundwater systems is between 6 and 8.5. Water with a low pH (<6.5) could be acidic, soft, and corrosive, and could contain elevated levels of toxic metal that might cause premature damage to metal piping.Water with a pH > 8.5 could indicate that the water is hard.Hard water does not pose a health risk, but can cause mineral deposits on fixtures and dishes and can have a bad taste and odor.Alkalinity is the water’s capacity to resist decreases in pH level. This resistance is achieved through a process called buffering (a buffered solution resists changes in pH until the buffer is used up). Alkalinity of natural water is determined by the soil and bedrock through which it passes. The main sources for natural alkalinity are rocks that contain carbonate, bicarbonate, and hydroxide compounds. These compounds, however, also cause hardness, which is less desirable in a drinking source. To illustrate the affect of alkalinity on pH stability, acid was added to two 100 milliliters sample solutions that initially had a pH of 6.5. The solution in Figure 1A had an alkalinity level of 200 mg/L while the solution in Figure 1B tested at zero alkalinity. The pH of the two solutions was recorded after every addition of acid and the results are shown in the figures below.Q.The test results of Sample 1 indicate that

Directions:Read the passages and choose the best answer to each question.PassageWhen connection to a municipal water system is not feasible, wells are drilled to access ground water. Engineers employed by a company interested in developing a remote plot of land conducted studies to compare the water quality of 2 possible well locations on the land. Water quality is determined by a number of factors, including the levels of nitrates, lead, microbes, pH, “hardness” (calcium carbonat e), and alkalinity. The water samples were kept at a constant temperature of 72 F throughout the study. The results in Table 1 show the readings of each test for the two different 100 mL samples of water, as well as the ideal level, or concentration, for each chemical.The pH scale measures how acidic or basic a substance is on a scale of 0 to 14. Lower numbers indicate increasing acidity and higher numbers indicate increasing basicity.The normal pH level of groundwater systems is between 6 and 8.5. Water with a low pH (<6.5) could be acidic, soft, and corrosive, and could contain elevated levels of toxic metal that might cause premature damage to metal piping.Water with a pH > 8.5 could indicate that the water is hard.Hard water does not pose a health risk, but can cause mineral deposits on fixtures and dishes and can have a bad taste and odor.Alkalinity is the water’s capacity to resist decreases in pH level. This resistance is achieved through a process called buffering (a buffered solution resists changes in pH until the buffer is used up). Alkalinity of natural water is determined by the soil and bedrock through which it passes. The main sources for natural alkalinity are rocks that contain carbonate, bicarbonate, and hydroxide compounds. These compounds, however, also cause hardness, which is less desirable in a drinking source. To illustrate the affect of alkalinity on pH stability, acid was added to two 100 milliliters sample solutions that initially had a pH of 6.5. The solution in Figure 1A had an alkalinity level of 200 mg/L while the solution in Figure 1B tested at zero alkalinity. The pH of the two solutions was recorded after every addition of acid and the results are shown in the figures below.Q.Which of the following statements best describes the concentration of lead in Sample 1?

Top Courses for ACT

Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer?
Question Description
Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? for ACT 2025 is part of ACT preparation. The Question and answers have been prepared according to the ACT exam syllabus. Information about Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for ACT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer?.
Solutions for Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for ACT. Download more important topics, notes, lectures and mock test series for ACT Exam by signing up for free.
Here you can find the meaning of Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice Buffer solution is destroyed when _________.a)addition of weak baseb)addition of strong acid or basec)addition of weak acidd)addition of a saltCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice ACT tests.
Explore Courses for ACT exam

Top Courses for ACT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev