GMAT Exam  >  GMAT Questions  >  New observations about the age of some globul... Start Learning for Free
New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.
The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.
However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.
To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.
According to the passage, one way in which Larson's theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of the
  • a)
    amount of time it took to form the galaxy
  • b)
    size of the galaxy immediately after its formation
  • c)
    the particular gases involved in the formation the galaxy
  • d)
    importance of the age of globular clusters in determining how the galaxy was formed
  • e)
    shape of the halo that formed around the galaxy
Correct answer is option 'A'. Can you explain this answer?
Most Upvoted Answer
New observations about the age of some globular clusters in our Milky ...
  • The conventional theory suggests the Milky Way formed rapidly (about 200 million years).
  • Larson's theory proposes a much longer formation period (over a billion years).
  • The key difference is the time span each theory suggests for the galaxy's formation.
Attention GMAT Students!
To make sure you are not studying endlessly, EduRev has designed GMAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in GMAT.
Explore Courses for GMAT exam

Top Courses for GMAT

New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer?
Question Description
New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer?.
Solutions for New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer?, a detailed solution for New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? has been provided alongside types of New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice New observations about the age of some globular clusters in our Milky Way galaxy have cast doubt on a long-held theory about how the galaxy was formed. The Milky Way contains about 125 globular clusters (compact groups of anywhere from several tens of thousands to perhaps a million stars) distributed in a roughly spherical halo around the galactic nucleus. The stars in these clusters are believed to have been born during the formation of the galaxy, and so may be considered relics of the original galactic nebula, holding vital clues to the way the formation took place.The conventional theory of the formation of the galaxy contends that roughly 12 to 13 billion years ago the Milky Way formed over a relatively short time (about 200 million years) when a spherical cloud of gas collapsed under the pressure of its own gravity into a disc surrounded by a halo. Such a rapid formation of the galaxy would mean that all stars in the halo should be very nearly the same age.However, the astronomer Michael Bolte has found considerable variation in the ages of globular clusters. One of the clusters studied by Bolte is 2 billions years older than most other clusters in the galaxy, while another is 2 billion years younger. A colleague of Bolte contends that the cluster called Palomar 12 is 5 billion years younger than most other globular clusters.To explain the age differences among the globular clusters, astronomers are taking a second look at “renegade” theories. One such newly fashionable theory, first put forward by Richard Larson in the early 1970’s, argues that the halo of the Milky Way formed over a period of a billion or more years as hundreds of small gas clouds drifted about, collided, lost orbital energy, and finally collapsed into a centrally condensed elliptical system. Larson’s conception of a “lumpy and turbulent” protogalaxy is complemented by computer modeling done in the 1970’s by mathematician Alan Toomre, which suggests that closely interacting spiral galaxies could lose enough orbital energy to merge into a single galaxy.According to the passage, one way in which Larsons theory and the conventional theory of the formation of the Milky Way galaxy differ is in their assessment of thea)amount of time it took to form the galaxyb)size of the galaxy immediately after its formationc)the particular gases involved in the formation the galaxyd)importance of the age of globular clusters in determining how the galaxy was formede)shape of the halo that formed around the galaxyCorrect answer is option 'A'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev