GMAT Exam  >  GMAT Questions  >  One of the foundations of scientific research... Start Learning for Free
One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.
Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.
In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.
In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.
There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.
The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?
  • a)
    emphasize the extraordinarily large number of physical irregularities in a riddled basin of attraction
  • b)
    emphasize the unusual types of physical irregularities found in Sommerer and Ott’s model
  • c)
    emphasize the large percentage of a riddled basin of attraction that exhibits unpredictability
  • d)
    emphasize the degree of unpredictability in Sommerer and Ott’s model
  • e)
    emphasize the number of fractal properties in a riddled basin of attraction
Correct answer is option 'D'. Can you explain this answer?
Most Upvoted Answer
One of the foundations of scientific research is that an experimental ...
To understand the function of the discussion about the chaos of physical systems, we need to identify what it emphasizes in the context of the passage.
(A) Incorrect. This option focuses on the number of physical irregularities, which is not the main emphasis.
(B) Incorrect. This option suggests unusual types of irregularities, which is not the main point.
(C) Incorrect. This option highlights the percentage of unpredictability, which is not emphasized.
(D) Correct. This option accurately reflects the focus on the degree of unpredictability in Sommerer and Ott’s model.
(E) Incorrect. This option focuses on the number of fractal properties, which is not the main emphasis.
The correct answer is (D) because the passage emphasizes how unpredictable the systems described in Sommerer and Ott’s model are.
Attention GMAT Students!
To make sure you are not studying endlessly, EduRev has designed GMAT study material, with Structured Courses, Videos, & Test Series. Plus get personalized analysis, doubt solving and improvement plans to achieve a great score in GMAT.
Explore Courses for GMAT exam

Similar GMAT Doubts

One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.Given the information in the passage, Sommerer and Ott are most likely to agree with which one of the following?

One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.Which one of the following most accurately expresses the main point of the passage?

One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.According to the passage, Sommerer and Ott’s model differs from a riddled basin of attraction in which one of the following ways?

One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.Which one of the following most accurately describes the author’s attitude toward the work of Sommerer and Ott?

Read the passage and answer the question given below.The study of the analog position of mental representation has many fascinating branches which help illuminate the inner workings of our minds and how we perceive images in our mind‘s eye. This theory points to the link between the time it takes to solve mental problems and their complexity.In a now-famous study, Stephen Kosslyn asked subjects to imagine an animal, such as a rabbit, next to either an elephant or a fly. When the image was formed, Kosslyn would ask whether or not the target animal had a particular attribute. For example, Kosslyn might say, elephant, rabbit, and then leg. He found that it took subjects longer to answer when the target animal was next to the large animal than when it was next to the small animal. Kosslyn interpreted this to mean that subjects had to zoom in on the image to detect the particular feature. Just as one has difficulty seeing details on small objects, so the subjects could not simply mentally see details on the smaller object in their mental image.Second, Kosslyn and colleagues demonstrated that the time it takes to scan between two points depends on the distance between the two points [in a memorized image]. In one experiment, subjects memorized an array of letters separated by different distances. Kosslyn found that the farther apart the letters were from each other, the longer it took to answer questions about one of the letters. One of the principal hypotheses of the analog position of mental representation, which is the idea that mental processing requires one to move sequentially through all intervening steps to solve a problem, is that mental images have regular properties.In a similar experiment, Kosslyn had subjects memorize pictures of objects like a plane or a motorboat. Then he had them focus on one part of the object (e.g., the motor) and move to another (e.g., the anchor). He found that the time it took to determine whether the second part was present depended on the distance between the two parts in the memorized picture.Using a completely different paradigm, Shepard and Feng tested the amount of time that it would take for subjects to specify whether two arrows on unfolded blocks matched up. They found a linear relationship between the number of folds between the arrows and the time it took to make this judgment, suggesting that subjects went through a discrete series of organized steps in order to solve this problem.The final type of experiment showing that mental images have regular properties is perhaps the most famous: mental rotation experiments. In 1971, Shepard and Metzler tested subjects‘ abilities to make complex figure comparisons. They presented subjects with a three dimensional standard figure and a comparison figure which was either identical to the standard figure, or its mirror image; the comparison stimulus was rotated, either clockwise or into the third dimension. Shepard and Metzler found that the time needed to judge whether the comparison stimulus was identical or a mirror image depended directly on the size of the angle between the target orientation and the orientation of the standard.Q.According to the scanning experiments mentioned in the passage, it should take longer to scan longer distances because the subjects

Top Courses for GMAT

One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer?
Question Description
One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? for GMAT 2024 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? covers all topics & solutions for GMAT 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer?.
Solutions for One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer?, a detailed solution for One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? has been provided alongside types of One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice One of the foundations of scientific research is that an experimental result is credible only if it can be replicated—only if performing the experiment a second time leads to the same result. But physicists John Sommerer and Edward Ott have conceived of a physical system in which even the least change in the starting conditions—no matter how small, inadvertent, or undetectable—can alter results radically. The system is represented by a computer model of a mathematical equation describing the motion of a particle placed in a particular type of force field.Sommerer and Ott based their system on an analogy with the phenomena known as riddled basins of attraction. If two bodies of water bound a large landmass and water is spilled somewhere on the land, the water will eventually make its way to one or the other body of water, its destination depending on such factors as where the water is spilled and the geographic features that shape the water’s path and velocity. The basin of attraction for a body of water is the area of land that, whenever water is spilled on it, always directs the spilled water to that body.In some geographical formations it is sometimes impossible to predict, not only the exact destination of the spilled water, but even which body of water it will end up in. This is because the boundary between one basin of attraction and another is riddled with fractal properties; in other words, the boundary is permeated by an extraordinarily high number of physical irregularities such as notches or zigzags. Along such a boundary, the only way to determine where spilled water will flow at any given point is actually to spill it and observe its motion; spilling the water at any immediately adjacent point could give the water an entirely different path, velocity, or destination.In the system posited by the two physicists, this boundary expands to include the whole system: i.e., the entire force field is riddled with fractal properties, and it is impossible to predict even the general destination of the particle given its starting point. Sommerer and Ott make a distinction between this type of uncertainty and that known as “chaos”; under chaos, a particle’s general destination would be predictable but its path and exact destination would not.There are presumably other such systems because the equation the physicists used to construct the computer model was literally the first one they attempted, and the likelihood that they chose the only equation that would lead to an unstable system is small. If other such systems do exist, metaphorical examples of riddled basins of attraction may abound in the failed attempts of scientists to replicate previous experimental results—in which case, scientists would be forced to question one of the basic principles that guide their work.The discussion of the chaos of physical systems is intended to perform which one of the following functions in the passage?a)emphasize the extraordinarily large number of physical irregularities in a riddled basin of attractionb)emphasize the unusual types of physical irregularities found in Sommerer and Ott’s modelc)emphasize the large percentage of a riddled basin of attraction that exhibits unpredictabilityd)emphasize the degree of unpredictability in Sommerer and Ott’s modele)emphasize the number of fractal properties in a riddled basin of attractionCorrect answer is option 'D'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev