JEE Exam  >  JEE Questions  >  As we all know integral of dx is x+c but what... Start Learning for Free
As we all know integral of dx is x+c but what is integral of d1/x?
Verified Answer
As we all know integral of dx is x+c but what is integral of d1/x?
The integral sign ∫ represents integration. The symbol dx, called the differential of the variable x, indicates that the variable of integration is x. The function f(x) to be integrated is called the integrand. ... If a function has an integral, it is said to be integrable.
This question is part of UPSC exam. View all JEE courses
Most Upvoted Answer
As we all know integral of dx is x+c but what is integral of d1/x?
Community Answer
As we all know integral of dx is x+c but what is integral of d1/x?
Your answer as well as question both are wrong because integral of d1/x is not defined and log x is the integral of dx/x.
Explore Courses for JEE exam

Similar JEE Doubts

Titrations are one of the methods we can use to discover the precise concentrations of solution. A typical titration involves adding a solution from a burette to another solution in a flask. The endpoint of the titration is found by watching a colour change taking place. However, a problem arises when a suitable indicator cannot be found, or when the colour changes involved are unclear. In cases redox potential may sometimes come to the rescue.A particularly well known example (Fig.1) is a method of discovering the concentration of iron in a solution by titrating them with a solution of cerium (IV). The redox potential that areof interest here are EFe3+/Fe2+ = + 0.77 V and ECe4+/Ce3+ = + 1.61 V. These tell us that cercium (IV) ions are the oxidizing agents, and iron (II) ions are the reducing agent. They should react according to the equationFe2+ (aq) + Ce4+ (aq) Fe3+ (aq) + Ce3+ (aq)Now imagine that we know the concentration of the cerium (IV) ions solution in the burette. We want to measure the concentration of the iron (II) solution. If we add just one drop of the cerium (IV) solution from the bruette, some of the iron (II) ions will be oxidised. As a consequence the beaker would now contain a large number of unreacted ions, but also some iron (III) ions as well. All of the cerium (III). The solution in the beaker now represents an iron(III)/iron(II) half cell, although not at standard conditions. Thus the e.m.f. of the cell will be near, but not equal, to EFe3+/Fe2+.to ad cerium (IV) solution, the number of iron (II) ions is gradually reduced and eventually only a very few are left (Tabl e).At this stage the next few drops of cerium (IV) solution convert all the remaining iron (II) ions into iron (III), and some of the cerium (IV) ions are left unreacted. Once this happens we no longer ions and a smaller number of cerium (IV) ions. The solution in the beaker now behaves as a cerium (IV)/cerium (III) half-cell (although not a standard one).Just before all the iron (II) ions are converted into iron (III) we have a cell with an e.m.f.of around + 0.77 V. After all the iron (II) ions are oxidised, we have a cell with an e.m.f. of about + 1.61 V. This rapid rise in e.m.f. occurs with the addition of hust one drop of cerium (IV) solution. You should be able to understand why a graph of cell e.m.f. against volume ofcerium (IV) solution added looks like that of Fig. 2. The end point of the titration can be read from the graph and the concentration of the iron (II) solution calculated in the usual wayQ.Imagine you were given a solution of potassium dichromate (VI) in a beaker, and a solution of iron (II) sulphate in a burette. You do not know the concentration of dichromate (VI) ions, but the concentration of the iron (II) solution is known. Your task is to carry out a redox titration using the two solutions in order to determine the concentration of dichromate(VI) ions. Sketch a graph how the e.m.f. changes in the course of above titration. E Cr2O2-7/Cr3+ = 1.33 V, EFe3+/Fe2+ = 0.77 V.

Titrations are one of the methods we can use to discover the precise concentrations of solution. A typical titration involves adding a solution from a burette to another solution in a flask. The endpoint of the titration is found by watching a colour change taking place. However, a problem arises when a suitable indicator cannot be found, or when the colour changes involved are unclear. In cases redox potential may sometimes come to the rescue.A particularly well known example (Fig.1) is a method of discovering the concentration of iron in a solution by titrating them with a solution of cerium (IV). The redox potential that areof interest here are EFe3+/Fe2+ = + 0.77 V and ECe4+/Ce3+ = + 1.61 V. These tell us that cercium (IV) ions are the oxidizing agents, and iron (II) ions are the reducing agent. They should react according to the equationFe2+ (aq) + Ce4+ (aq) Fe3+ (aq) + Ce3+ (aq)Now imagine that we know the concentration of the cerium (IV) ions solution in the burette. We want to measure the concentration of the iron (II) solution. If we add just one drop of the cerium (IV) solution from the bruette, some of the iron (II) ions will be oxidised. As a consequence the beaker would now contain a large number of unreacted ions, but also some iron (III) ions as well. All of the cerium (III). The solution in the beaker now represents an iron(III)/iron(II) half cell, although not at standard conditions. Thus the e.m.f. of the cell will be near, but not equal, to EFe3+/Fe2+.to ad cerium (IV) solution, the number of iron (II) ions is gradually reduced and eventually only a very few are left (Tabl e).At this stage the next few drops of cerium (IV) solution convert all the remaining iron (II) ions into iron (III), and some of the cerium (IV) ions are left unreacted. Once this happens we no longer ions and a smaller number of cerium (IV) ions. The solution in the beaker now behaves as a cerium (IV)/cerium (III) half-cell (although not a standard one).Just before all the iron (II) ions are converted into iron (III) we have a cell with an e.m.f.of around + 0.77 V. After all the iron (II) ions are oxidised, we have a cell with an e.m.f. of about + 1.61 V. This rapid rise in e.m.f. occurs with the addition of hust one drop of cerium (IV) solution. You should be able to understand why a graph of cell e.m.f. against volume ofcerium (IV) solution added looks like that of Fig. 2. The end point of the titration can be read from the graph and the concentration of the iron (II) solution calculated in the usual wayQ.The cell shown below was set upWhat would be the cell e.m.f.? If potassium cyanide solution were added to the left hand half cell (with due care!), what would you expect to happen to the e.m.f. of the cell? E Br2/Br- = 1.07V and use data of previousquestion, if required.

As we all know integral of dx is x+c but what is integral of d1/x?
Question Description
As we all know integral of dx is x+c but what is integral of d1/x? for JEE 2024 is part of JEE preparation. The Question and answers have been prepared according to the JEE exam syllabus. Information about As we all know integral of dx is x+c but what is integral of d1/x? covers all topics & solutions for JEE 2024 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for As we all know integral of dx is x+c but what is integral of d1/x?.
Solutions for As we all know integral of dx is x+c but what is integral of d1/x? in English & in Hindi are available as part of our courses for JEE. Download more important topics, notes, lectures and mock test series for JEE Exam by signing up for free.
Here you can find the meaning of As we all know integral of dx is x+c but what is integral of d1/x? defined & explained in the simplest way possible. Besides giving the explanation of As we all know integral of dx is x+c but what is integral of d1/x?, a detailed solution for As we all know integral of dx is x+c but what is integral of d1/x? has been provided alongside types of As we all know integral of dx is x+c but what is integral of d1/x? theory, EduRev gives you an ample number of questions to practice As we all know integral of dx is x+c but what is integral of d1/x? tests, examples and also practice JEE tests.
Explore Courses for JEE exam

Top Courses for JEE

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev