Prove that : tanA =sinA- 2sin3A÷2cos3A-cosA?
Prove that : tanA =sinA- 2sin3A÷2cos3A-cosA?
Proof:
We are given the expression:
tanA = sinA - 2sin3A / 2cos3A - cosA
To prove this expression, we'll start by simplifying the right-hand side (RHS) of the equation.
Simplifying the RHS:
We can rewrite the expression as follows:
tanA = (sinA - 2sin3A) / (2cos3A - cosA)
Next, we'll simplify the numerator and denominator separately.
Simplifying the numerator:
Using the trigonometric identity sin3A = 3sinA - 4sin^3A, we can rewrite the numerator as:
sinA - 2sin3A = sinA - 2(3sinA - 4sin^3A)
= sinA - 6sinA + 8sin^3A
= -5sinA + 8sin^3A
Simplifying the denominator:
Using the trigonometric identity cos3A = 4cos^3A - 3cosA, we can rewrite the denominator as:
2cos3A - cosA = 2(4cos^3A - 3cosA) - cosA
= 8cos^3A - 7cosA
Substituting the simplified numerator and denominator back into the expression:
Now, we can substitute these simplified forms back into the original expression:
tanA = (-5sinA + 8sin^3A) / (8cos^3A - 7cosA)
To further simplify this expression, we'll use the trigonometric identity tanA = sinA / cosA:
tanA = (sinA / cosA) * ((-5sinA + 8sin^3A) / (8cos^3A - 7cosA))
Now, we can cancel out the common factors:
tanA = (-5sinA + 8sin^3A) / (8cos^3A - 7cosA)
Therefore, we have proven that:
tanA = sinA - 2sin3A / 2cos3A - cosA