Prove that 1/cosec theta -cot theta -1/sin theta=1/sin theta -1/cosec ...
Proof: 1/cosec theta - cot theta - 1/sin theta = 1/sin theta - 1/cosec theta cot theta
Step 1: Rewrite all trigonometric functions in terms of sin and cos
We know that:
- cosec(theta) = 1/sin(theta)
- cot(theta) = cos(theta)/sin(theta)
Substituting these values, we get:
- 1/cosec(theta) - cot(theta) - 1/sin(theta) = 1/sin(theta) - 1/cosec(theta) * cot(theta)
Step 2: Simplify the left-hand side of the equation
- 1/cosec(theta) - cot(theta) - 1/sin(theta) = 1/sin(theta) - cos(theta)/sin(theta) - 1/sin(theta)
- 1/cosec(theta) - cot(theta) - 1/sin(theta) = -cos(theta)/sin(theta)
- 1/cosec(theta) - cot(theta) - 1/sin(theta) = -1/sin(theta) * cos(theta)
Step 3: Simplify the right-hand side of the equation
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = 1/sin(theta) - 1/(1/sin(theta)) * (cos(theta)/sin(theta))
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = 1/sin(theta) - sin(theta)/cos(theta)
Step 4: Combine like terms on the right-hand side
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = (cos(theta)/cos(theta)*sin(theta)) - (sin(theta)/cos(theta)*sin(theta))
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = (cos(theta)*sin(theta) - sin(theta))/sin(theta)*cos(theta)
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = sin(theta)*(cos(theta)-1)/sin(theta)*cos(theta)
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = (cos(theta)-1)/cos(theta)
Step 5: Simplify the right-hand side further
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = cos(theta)/cos(theta) - 1/cos(theta)
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = 1/cos(theta) - 1/cosec(theta)
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = 1/cosec(theta) * sin(theta) - 1/cosec(theta)
- 1/sin(theta) - 1/cosec(theta) * cot(theta) = 1/cosec(theta) * (sin(theta) - cot(theta)))
Step 6: Substitute the left-hand side of the equation with the right-hand side
- -cos(theta)/sin(theta