JEE  >  HC Verma and Irodov Solutions  >  HC Verma Solutions: Chapter 8 - Work & Energy

HC Verma Solutions: Chapter 8 - Work & Energy Notes | Study HC Verma and Irodov Solutions - JEE

Document Description: HC Verma Solutions: Chapter 8 - Work & Energy for JEE 2022 is part of HC Verma and Irodov Solutions preparation. The notes and questions for HC Verma Solutions: Chapter 8 - Work & Energy have been prepared according to the JEE exam syllabus. Information about HC Verma Solutions: Chapter 8 - Work & Energy covers topics like and HC Verma Solutions: Chapter 8 - Work & Energy Example, for JEE 2022 Exam. Find important definitions, questions, notes, meanings, examples, exercises and tests below for HC Verma Solutions: Chapter 8 - Work & Energy.

Introduction of HC Verma Solutions: Chapter 8 - Work & Energy in English is available as part of our HC Verma and Irodov Solutions for JEE & HC Verma Solutions: Chapter 8 - Work & Energy in Hindi for HC Verma and Irodov Solutions course. Download more important topics related with notes, lectures and mock test series for JEE Exam by signing up for free. JEE: HC Verma Solutions: Chapter 8 - Work & Energy Notes | Study HC Verma and Irodov Solutions - JEE
Download, print and study this document offline
 Page 1


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Page 2


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Page 3


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Chapter 8
8.3
Force F= mg sin 37° = 100 × 0.60 = 60 N
So, work done, when the force is parallel to incline.
w = Fs cos ? = 60 × 2 × cos ? = 120 J
In ?ABC AB= 2m
CB = 37°
so, h = C = 1m
?work done when the force in horizontal direction 
W = mgh = 100 × 1.2 = 120 J ?
13. m = 500 kg, s = 25m, u = 72km/h= 20 m/s, v = 0
(-a) = 
S 2
u v
2 2
?
? a = 
50
400
= 8m/sec
2
Frictional force f = ma = 500 × 8 = 4000 N
14. m = 500 kg, u = 0, v = 72 km/h = 20m/s
a = 
s 2
u v
2 2
?
=
50
400
= 8m/sec
2
force needed to accelerate the car F = ma = 500 × 8 = 4000 N
15. Given, v = a x (uniformly accelerated motion)
displacement s = d – 0 = d
putting x = 0, v
1
= 0
putting x = d, v
2
= a d
a = 
s 2
u v
2
2
2
2
?
= 
d 2
d a
2
= 
2
a
2
force f = ma = 
2
ma
2
work done w = FS cos ? = d
2
ma
2
? = 
2
d ma
2
?
16. a) m = 2kg, ? = 37°, F = 20 N
From the free body diagram 
F = (2g sin ?) + ma ? a = (20 – 20 sin ?)/s = 4m/sec
2
S = ut + ½ at
2
  (u = 0, t = 1s, a = 1.66)
= 2m
So, work, done w = Fs = 20 × 2 = 40 J
b) If W = 40 J
S = 
F
W
= 
20
40
h = 2 sin 37° = 1.2 m
So, work done W = –mgh = – 20 × 1.2 = –24 J
c) v = u + at  = 4 × 10 = 40 m/sec
So, K.E.  = ½ mv
2
= ½ × 2 × 16 = 16 J
17. m = 2kg, ? = 37°, F = 20 N, a = 10 m/sec
2
a) t = 1sec
So, s= ut + ½ at
2
= 5m
37°
?
A ?
A ?
A ?
B ?
v=0
?
v=20 m/s
m=500 kg ?
–a 
?
25m
?
a 
?
R  
mg
?
ma f 
?
500 kg ?
a 
?
25m
?
R  
mg
?
F
F 
?
ma
?
ma ?
2g cos ? ?
20N
?
R 
?
ma 2gsin ? ?
20N ?
ma ?
mg cos ? ?
20N
?
R 
?
mg sin ? ?
?R ?
h
?
37°
?
5m ?
C ?
A ?
B ?
37°
?
Page 4


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Chapter 8
8.3
Force F= mg sin 37° = 100 × 0.60 = 60 N
So, work done, when the force is parallel to incline.
w = Fs cos ? = 60 × 2 × cos ? = 120 J
In ?ABC AB= 2m
CB = 37°
so, h = C = 1m
?work done when the force in horizontal direction 
W = mgh = 100 × 1.2 = 120 J ?
13. m = 500 kg, s = 25m, u = 72km/h= 20 m/s, v = 0
(-a) = 
S 2
u v
2 2
?
? a = 
50
400
= 8m/sec
2
Frictional force f = ma = 500 × 8 = 4000 N
14. m = 500 kg, u = 0, v = 72 km/h = 20m/s
a = 
s 2
u v
2 2
?
=
50
400
= 8m/sec
2
force needed to accelerate the car F = ma = 500 × 8 = 4000 N
15. Given, v = a x (uniformly accelerated motion)
displacement s = d – 0 = d
putting x = 0, v
1
= 0
putting x = d, v
2
= a d
a = 
s 2
u v
2
2
2
2
?
= 
d 2
d a
2
= 
2
a
2
force f = ma = 
2
ma
2
work done w = FS cos ? = d
2
ma
2
? = 
2
d ma
2
?
16. a) m = 2kg, ? = 37°, F = 20 N
From the free body diagram 
F = (2g sin ?) + ma ? a = (20 – 20 sin ?)/s = 4m/sec
2
S = ut + ½ at
2
  (u = 0, t = 1s, a = 1.66)
= 2m
So, work, done w = Fs = 20 × 2 = 40 J
b) If W = 40 J
S = 
F
W
= 
20
40
h = 2 sin 37° = 1.2 m
So, work done W = –mgh = – 20 × 1.2 = –24 J
c) v = u + at  = 4 × 10 = 40 m/sec
So, K.E.  = ½ mv
2
= ½ × 2 × 16 = 16 J
17. m = 2kg, ? = 37°, F = 20 N, a = 10 m/sec
2
a) t = 1sec
So, s= ut + ½ at
2
= 5m
37°
?
A ?
A ?
A ?
B ?
v=0
?
v=20 m/s
m=500 kg ?
–a 
?
25m
?
a 
?
R  
mg
?
ma f 
?
500 kg ?
a 
?
25m
?
R  
mg
?
F
F 
?
ma
?
ma ?
2g cos ? ?
20N
?
R 
?
ma 2gsin ? ?
20N ?
ma ?
mg cos ? ?
20N
?
R 
?
mg sin ? ?
?R ?
h
?
37°
?
5m ?
C ?
A ?
B ?
37°
?
Chapter 8
8.4
Work done by the applied force w = FS cos 0° = 20 × 5 = 100 J
b) BC (h) = 5 sin 37° = 3m
So, work done by the weight W = mgh = 2 × 10 × 3 = 60 J
c) So, frictional force f = mg sin ?
work done by the frictional forces w = fs cos0° = (mg sin ?) s = 20 × 0.60 × 5  = 60 J ?
18. Given, m = 25o g = 0.250kg, 
u = 40 cm/sec = 0.4m/sec
? = 0.1, v=0
Here, ? R = ma {where, a = deceleration}
a = 
m
R ?
= 
m
mg ?
= ?g = 0.1 × 9.8 = 0.98 m/sec
2
S = 
a 2
u v
2 2
?
= 0.082m = 8.2 cm
Again, work done against friction is given by 
– w = ? RS cos ?
= 0.1 × 2.5 × 0.082 × 1 ( ? = 0°) = 0.02 J
? W = – 0.02 J
?
19. h = 50m, m = 1.8 × 10
5
kg/hr, P = 100 watt,
P.E. = mgh = 1.8 × 10
5
× 9.8 × 50 = 882 × 10
5
J/hr
Because, half the potential energy is converted into electricity, 
Electrical energy ½ P.E. = 441 × 10
5
J/hr
So, power in watt (J/sec) is given by = 
3600
10 441
5
?
? number of 100 W lamps, that can be lit 
100 3600
10 441
5
?
?
= 122.5 ?122 
20. m = 6kg, h = 2m
P.E. at a height ‘2m’ = mgh = 6 × (9.8) × 2 = 117.6 J
P.E. at floor = 0
Loss in P.E. = 117.6 – 0 = 117. 6 J ? 118 J
21. h = 40m, u = 50 m/sec
Let the speed be ‘v’ when it strikes the ground.
Applying law of conservation of energy 
mgh + ½ mu
2
= ½ mv
2
? 10 × 40 + (1/2) × 2500 = ½ v
2 
? v
2
= 3300 ? v = 57.4 m/sec ?58 m/sec
22. t = 1 min 57.56 sec = 11.56 sec, p= 400 W, s =200 m
p = 
t
w
, Work w = pt = 460 × 117.56 J
Again, W = FS = 
200
56 . 117 460 ?
= 270.3 N ? 270 N
23. S = 100 m, t = 10.54 sec, m = 50 kg
The motion can be assumed to be uniform because the time taken for acceleration is 
minimum.
Page 5


8.1
SOLUTIONS TO CONCEPTS 
CHAPTER – 8
1. M = m
c
+ m
b
= 90kg
u =  6 km/h = 1.666 m/sec
v = 12 km/h = 3.333 m/sec
Increase in K.E. = ½ Mv
2
– ½ Mu
2
= ½ 90 × (3.333)
2
– ½ × 90 × (1.66)
2
= 494.5 – 124.6 = 374.8 ? 375 J
2. m
b
= 2 kg.
u = 10 m/sec
a = 3 m/aec
2
t = 5 sec
v = u + at = 10 + 3 I 5 = 25 m/sec.
?F.K.E = ½ mv
2
= ½ × 2 × 625 = 625 J.
3. F = 100 N
S = 4m, ? = 0°
? = S . F
? ?
???100 × 4 = 400 J ?
4. m = 5 kg
? = 30°
S = 10 m
F = mg
So, work done by the force of gravity
? = mgh = 5 × 9.8 × 5 = 245 J ?
5. F= 2.50N, S = 2.5m,  m =15g = 0.015kg.
So, w = F × S ? a = 
m
F
= 
015 . 0
5 . 2
= 
3
500
m/s
2
=F × S cos 0° (acting along the same line)
= 2.5 × 2.5 = 6.25J
Let the velocity of the body at b = U. Applying work-energy principle ½ mv
2
– 0 = 6.25
? V = 
015 . 0
2 25 . 6 ?
= 28.86 m/sec.
So, time taken to travel from A to B.
? t = 
a
u v ?
= 
500
3 86 . 28 ?
? Average power = 
t
W
= 
3 ) 86 . 28 (
500 25 . 6
?
?
= 36.1
6. Given 
j
ˆ
3 i
ˆ
2 r
1
? ?
?
j
ˆ
2 i
ˆ
3 r
2
? ?
So, displacement vector is given by,
2 1
r r r
? ? ?
? ? ? j
ˆ
i
ˆ
) j
ˆ
3 i
ˆ
2 ( ) j
ˆ
2 i
ˆ
3 ( r ? ? ? ? ? ?
?
u=1.66 m/s ?
90kg ? 90kg ?
v=3.33 m/s ?
u=10 m/s ?
2 kg ? a
?
= 3m/s
2
F ?
4m ?
R ?
100 N ?
mg ?
30°
?
5 ?
mg ?
F ?
5 log ?
10m ?
30°
?
v ? ?
A ? B ?
Chapter 8
8.2
So, work done = s F
?
?
? = 5 × 1 + 5(-1) = 0
7. m
b
= 2kg, s = 40m, a = 0.5m/sec
2
So, force applied by the man on the box
F = m
b
a = 2 × (0.5) = 1 N
? = FS = 1 × 40 = 40 J ?
8. Given that F= a + bx
Where a and b are constants.
So, work done by this force during this force during the displacement x = 0 and  x = d is given 
by 
W = 
? ?
? ?
d
0
d
0
dx ) bx a ( dx F = ax + (bx
2
/2) = [a + ½ bd] d
9. m
b
= 250g = .250 kg
? = 37°, S = 1m.
Frictional force f = ?R
mg sin ? = ? R ..(1)
mg cos ?? ..(2)
so, work done against ?R = ?RS cos 0° = mg sin ? S = 0.250 × 9.8 × 0.60 × 1 = 1.5 J
10. a = 
) m M ( 2
F
?
(given)
a) from fig (1)
ma = ?
k
R
1
and R
1
= mg
? ? =
1
R
ma
= 
g ) m M ( 2
F
?
b) Frictional force acting on the smaller block f = ?R = 
) m M ( 2
F m
mg
g ) m M ( 2
F
?
?
? ?
?
c) Work done w = fs s = d
w = d
) m M ( 2
mF
?
?
= 
) m M ( 2
mFd
?
?
11. Weight = 2000 N, S = 20m, ? = 0.2
a) R + Psin ? - 2000 = 0 ..(1)
P cos ? - 0.2 R =0 ..(2)
From (1) and (2) P cos ? – 0.2 (2000 – P sin ?)=0
P = 
? ? ? sin 2 . 0 cos
400
..(3)
So, work done by the person, W = PS cos ? = 
? ? ?
?
sin 2 . 0 cos
cos 8000
= 
? ? sin 2 . 0 1
8000
= 
? ? tan 5
40000
b) For minimum magnitude of force from equn(1)
d/d ? (cos ??+ 0.2 sin ?) = 0 ? tan ? = 0.2
putting the value in equn (3)
W = 
? ? tan 5
40000
= 
) 2 . 5 (
40000
= 7690 J
12. w = 100 N,  ? = 37°,  s = 2m
R ?
m b g ?
m b a ? F ?
R ?
?R ?
1 m ?
mg ?
37° ?
M
?
F ?
m
?
R 1 ?
? k R 1 ?
ma ?
mg ?
?R 1 ?
R 2 ?
f
?
ma ?
mg ?
?R 2 ?
? ?
R
?
P
?
0.2R ?
2000 N ?
Chapter 8
8.3
Force F= mg sin 37° = 100 × 0.60 = 60 N
So, work done, when the force is parallel to incline.
w = Fs cos ? = 60 × 2 × cos ? = 120 J
In ?ABC AB= 2m
CB = 37°
so, h = C = 1m
?work done when the force in horizontal direction 
W = mgh = 100 × 1.2 = 120 J ?
13. m = 500 kg, s = 25m, u = 72km/h= 20 m/s, v = 0
(-a) = 
S 2
u v
2 2
?
? a = 
50
400
= 8m/sec
2
Frictional force f = ma = 500 × 8 = 4000 N
14. m = 500 kg, u = 0, v = 72 km/h = 20m/s
a = 
s 2
u v
2 2
?
=
50
400
= 8m/sec
2
force needed to accelerate the car F = ma = 500 × 8 = 4000 N
15. Given, v = a x (uniformly accelerated motion)
displacement s = d – 0 = d
putting x = 0, v
1
= 0
putting x = d, v
2
= a d
a = 
s 2
u v
2
2
2
2
?
= 
d 2
d a
2
= 
2
a
2
force f = ma = 
2
ma
2
work done w = FS cos ? = d
2
ma
2
? = 
2
d ma
2
?
16. a) m = 2kg, ? = 37°, F = 20 N
From the free body diagram 
F = (2g sin ?) + ma ? a = (20 – 20 sin ?)/s = 4m/sec
2
S = ut + ½ at
2
  (u = 0, t = 1s, a = 1.66)
= 2m
So, work, done w = Fs = 20 × 2 = 40 J
b) If W = 40 J
S = 
F
W
= 
20
40
h = 2 sin 37° = 1.2 m
So, work done W = –mgh = – 20 × 1.2 = –24 J
c) v = u + at  = 4 × 10 = 40 m/sec
So, K.E.  = ½ mv
2
= ½ × 2 × 16 = 16 J
17. m = 2kg, ? = 37°, F = 20 N, a = 10 m/sec
2
a) t = 1sec
So, s= ut + ½ at
2
= 5m
37°
?
A ?
A ?
A ?
B ?
v=0
?
v=20 m/s
m=500 kg ?
–a 
?
25m
?
a 
?
R  
mg
?
ma f 
?
500 kg ?
a 
?
25m
?
R  
mg
?
F
F 
?
ma
?
ma ?
2g cos ? ?
20N
?
R 
?
ma 2gsin ? ?
20N ?
ma ?
mg cos ? ?
20N
?
R 
?
mg sin ? ?
?R ?
h
?
37°
?
5m ?
C ?
A ?
B ?
37°
?
Chapter 8
8.4
Work done by the applied force w = FS cos 0° = 20 × 5 = 100 J
b) BC (h) = 5 sin 37° = 3m
So, work done by the weight W = mgh = 2 × 10 × 3 = 60 J
c) So, frictional force f = mg sin ?
work done by the frictional forces w = fs cos0° = (mg sin ?) s = 20 × 0.60 × 5  = 60 J ?
18. Given, m = 25o g = 0.250kg, 
u = 40 cm/sec = 0.4m/sec
? = 0.1, v=0
Here, ? R = ma {where, a = deceleration}
a = 
m
R ?
= 
m
mg ?
= ?g = 0.1 × 9.8 = 0.98 m/sec
2
S = 
a 2
u v
2 2
?
= 0.082m = 8.2 cm
Again, work done against friction is given by 
– w = ? RS cos ?
= 0.1 × 2.5 × 0.082 × 1 ( ? = 0°) = 0.02 J
? W = – 0.02 J
?
19. h = 50m, m = 1.8 × 10
5
kg/hr, P = 100 watt,
P.E. = mgh = 1.8 × 10
5
× 9.8 × 50 = 882 × 10
5
J/hr
Because, half the potential energy is converted into electricity, 
Electrical energy ½ P.E. = 441 × 10
5
J/hr
So, power in watt (J/sec) is given by = 
3600
10 441
5
?
? number of 100 W lamps, that can be lit 
100 3600
10 441
5
?
?
= 122.5 ?122 
20. m = 6kg, h = 2m
P.E. at a height ‘2m’ = mgh = 6 × (9.8) × 2 = 117.6 J
P.E. at floor = 0
Loss in P.E. = 117.6 – 0 = 117. 6 J ? 118 J
21. h = 40m, u = 50 m/sec
Let the speed be ‘v’ when it strikes the ground.
Applying law of conservation of energy 
mgh + ½ mu
2
= ½ mv
2
? 10 × 40 + (1/2) × 2500 = ½ v
2 
? v
2
= 3300 ? v = 57.4 m/sec ?58 m/sec
22. t = 1 min 57.56 sec = 11.56 sec, p= 400 W, s =200 m
p = 
t
w
, Work w = pt = 460 × 117.56 J
Again, W = FS = 
200
56 . 117 460 ?
= 270.3 N ? 270 N
23. S = 100 m, t = 10.54 sec, m = 50 kg
The motion can be assumed to be uniform because the time taken for acceleration is 
minimum.
Chapter 8
8.5
a) Speed v = S/t = 9.487 e/s
So, K.E. = ½ mv
2
= 2250 J
b) Weight = mg = 490 J
given R = mg /10 = 49 J
so, work done against resistance W
F
= – RS = – 49 × 100 = – 4900 J
c) To maintain her uniform speed, she has to exert 4900 j of energy to over come friction
P = 
t
W
= 4900 / 10.54 = 465 W 
24. h = 10 m
flow rate = (m/t) = 30 kg/min = 0.5 kg/sec
power P = 
t
mgh
= (0.5) × 9.8  × 10 = 49 W
So, horse power (h.p) P/746 = 49/746 = 6.6 × 10
–2
hp
25. m = 200g = 0.2kg, h = 150cm = 1.5m, v = 3m/sec, t = 1 sec
Total work done = ½ mv
2 
+ mgh = (1/2) × (0.2) ×9 + (0.2) × (9.8) × (1.5) = 3.84 J
h.p. used = 
746
84 . 3
= 5.14 × 10
–3
26. m = 200 kg, s = 12m, t = 1 min = 60 sec
So, work  W = F cos ? = mgs cos0° [ ? = 0°, for minimum work]
= 2000 × 10 × 12 = 240000 J
So, power p = 
t
W
= 
60
240000
= 4000 watt
h.p = 
746
4000
= 5.3 hp. ?
27. The specification given by the company are
U = 0, m = 95 kg, P
m
= 3.5 hp
V
m
= 60 km/h = 50/3 m/sec t
m 
= 5 sec
So, the maximum acceleration that can be produced is given by,
a =  
5
0 ) 3 / 50 ( ?
= 
3
10
So, the driving force is given by 
F = ma = 95 × 
3
10
= 
3
950
N
So, the velocity that can be attained by maximum h.p. white supplying 
3
950
will be 
v = 
F
p
? v = 
950
5 746 5 . 3 ? ?
= 8.2 m/sec.
Because, the scooter can reach a maximum of 8.s m/sec while producing a force of 950/3 N, 
the specifications given are some what over claimed.
28. Given m = 30kg, v = 40 cm/sec = 0.4 m/sec s = 2m
From the free body diagram, the force given by the chain is, 
F = (ma – mg) = m(a – g) [where a = acceleration of the block]
a = 
2s
u2)  (v2
= 
4 . 0
16 . 0
= 0.04 m/sec
2
mg
?
F 
?
ma
?
mg
?
F 
?
Read More

Related Searches

mock tests for examination

,

pdf

,

Viva Questions

,

Extra Questions

,

Summary

,

HC Verma Solutions: Chapter 8 - Work & Energy Notes | Study HC Verma and Irodov Solutions - JEE

,

past year papers

,

HC Verma Solutions: Chapter 8 - Work & Energy Notes | Study HC Verma and Irodov Solutions - JEE

,

video lectures

,

Sample Paper

,

practice quizzes

,

shortcuts and tricks

,

MCQs

,

HC Verma Solutions: Chapter 8 - Work & Energy Notes | Study HC Verma and Irodov Solutions - JEE

,

Exam

,

Previous Year Questions with Solutions

,

study material

,

Objective type Questions

,

Important questions

,

Free

,

ppt

,

Semester Notes

;