Page 1
WAVE OPTICS
Interference of waves of intensity ?
1
and ?
2
:
resultant intensity, ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? = phase
difference.
For Constructive Interference : ?
max
=
? ?
2
2 1
? ? ?
For Destructive interference : ?
min
=
? ?
2
2 1
? ? ?
If sources are incoherent ? = ?
1
+ ?
2
, at each point.
YDSE :
Path difference, ?p = S
2
P – S
1
P = d sin ?
if d < < D =
D
dy
if y << D
for maxima,
?p = n ? ? y = n ? n = 0, ±1, ±2 .......
for minima
?p = ?p =
?
?
?
?
?
?
?
?
?
?
?
?
?
3........ - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
? y =
?
?
?
?
?
?
?
?
?
?
?
?
?
3....... - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
where, fringe width ? =
d
D ?
Here, ? = wavelength in medium.
Highest order maxima : n
max
= ?
?
?
?
?
?
?
d
total number of maxima = 2n
max
+ 1
Highest order minima : n
max
= ?
?
?
?
?
?
?
? 2
1 d
total number of minima = 2n
max
.
Page 2
WAVE OPTICS
Interference of waves of intensity ?
1
and ?
2
:
resultant intensity, ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? = phase
difference.
For Constructive Interference : ?
max
=
? ?
2
2 1
? ? ?
For Destructive interference : ?
min
=
? ?
2
2 1
? ? ?
If sources are incoherent ? = ?
1
+ ?
2
, at each point.
YDSE :
Path difference, ?p = S
2
P – S
1
P = d sin ?
if d < < D =
D
dy
if y << D
for maxima,
?p = n ? ? y = n ? n = 0, ±1, ±2 .......
for minima
?p = ?p =
?
?
?
?
?
?
?
?
?
?
?
?
?
3........ - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
? y =
?
?
?
?
?
?
?
?
?
?
?
?
?
3....... - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
where, fringe width ? =
d
D ?
Here, ? = wavelength in medium.
Highest order maxima : n
max
= ?
?
?
?
?
?
?
d
total number of maxima = 2n
max
+ 1
Highest order minima : n
max
= ?
?
?
?
?
?
?
? 2
1 d
total number of minima = 2n
max
.
Intensity on screen : ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? =
p
2
?
?
?
If ?
1
= ?
2
, ? = 4 ?
1
cos
2
?
?
?
?
?
? ? ?
2
YDSE with two wavelengths ?
1
& ?
2
:
The nearest point to central maxima where the bright fringes coincide:
y = n
1
?
1
= n
2
?
2
= Lcm of ?
1
and ?
2
The nearest point to central maxima where the two dark fringes
coincide,
y = (n
1
–
2
1
) ?
1
= n
2
–
2
1
) ?
2
Optical path difference
?p
opt
= ? ?p
? ? =
?
? 2
?p =
vacuum
2
?
?
?p
opt.
? = ( ? – 1) t.
d
D
= ( ? – 1)t
?
B
.
YDSE WITH OBLIQUE INCIDENCE
In YDSE, ray is incident on the slit at an inclination of ?
0
to
the axis of symmetry of the experimental set-up
?
1
P
1
P
2
B
0
O'
S
2
dsin ?
0
S
1
O
?
0
?
2
We obtain central maxima at a point where, ?p = 0.
or ?
2
= ?
0
.
This corresponds to the point O’ in the diagram.
Hence we have path difference.
?p =
?
?
?
?
?
? ? ? ?
? ? ? ?
? ? ? ?
O' below points for ) sin d(sin
O' & O between points for ) sin (sin d
O above points for ) sin (sin d
0
0
0
... (8.1)
Page 3
WAVE OPTICS
Interference of waves of intensity ?
1
and ?
2
:
resultant intensity, ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? = phase
difference.
For Constructive Interference : ?
max
=
? ?
2
2 1
? ? ?
For Destructive interference : ?
min
=
? ?
2
2 1
? ? ?
If sources are incoherent ? = ?
1
+ ?
2
, at each point.
YDSE :
Path difference, ?p = S
2
P – S
1
P = d sin ?
if d < < D =
D
dy
if y << D
for maxima,
?p = n ? ? y = n ? n = 0, ±1, ±2 .......
for minima
?p = ?p =
?
?
?
?
?
?
?
?
?
?
?
?
?
3........ - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
? y =
?
?
?
?
?
?
?
?
?
?
?
?
?
3....... - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
where, fringe width ? =
d
D ?
Here, ? = wavelength in medium.
Highest order maxima : n
max
= ?
?
?
?
?
?
?
d
total number of maxima = 2n
max
+ 1
Highest order minima : n
max
= ?
?
?
?
?
?
?
? 2
1 d
total number of minima = 2n
max
.
Intensity on screen : ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? =
p
2
?
?
?
If ?
1
= ?
2
, ? = 4 ?
1
cos
2
?
?
?
?
?
? ? ?
2
YDSE with two wavelengths ?
1
& ?
2
:
The nearest point to central maxima where the bright fringes coincide:
y = n
1
?
1
= n
2
?
2
= Lcm of ?
1
and ?
2
The nearest point to central maxima where the two dark fringes
coincide,
y = (n
1
–
2
1
) ?
1
= n
2
–
2
1
) ?
2
Optical path difference
?p
opt
= ? ?p
? ? =
?
? 2
?p =
vacuum
2
?
?
?p
opt.
? = ( ? – 1) t.
d
D
= ( ? – 1)t
?
B
.
YDSE WITH OBLIQUE INCIDENCE
In YDSE, ray is incident on the slit at an inclination of ?
0
to
the axis of symmetry of the experimental set-up
?
1
P
1
P
2
B
0
O'
S
2
dsin ?
0
S
1
O
?
0
?
2
We obtain central maxima at a point where, ?p = 0.
or ?
2
= ?
0
.
This corresponds to the point O’ in the diagram.
Hence we have path difference.
?p =
?
?
?
?
?
? ? ? ?
? ? ? ?
? ? ? ?
O' below points for ) sin d(sin
O' & O between points for ) sin (sin d
O above points for ) sin (sin d
0
0
0
... (8.1)
THIN-FILM INTERFERENCE
for interference in reflected light 2 ?d
=
?
?
?
?
?
? ?
?
ce interferen ve constructi for )
2
1
n (
ce interferen e destructiv for n
for interference in transmitted light 2 ?d
=
?
?
?
?
?
? ?
?
ce interferen e destructiv for )
2
1
n (
ce interferen ve constructi for n
Polarisation
?
? ? = tan .(brewster's angle)
? ? + ?
r
= 90°(reflected and refracted rays are mutually
perpendicular.)
? Law of Malus.
I = I
0
cos
2
I = KA
2
cos
2
? Optical activity
? ?
C L
C
t
?
?
? ?
?
?
? = rotation in length L at concentration C.
Diffraction
? a sin ? = (2m + 1) /2 for maxima. where m = 1, 2, 3 ......
? sin ? =
a
m ?
, m = ? ? 1, ? 2, ? 3......... for minima.
? Linear width of central maxima =
a
d 2 ?
? Angular width of central maxima =
a
2 ?
Page 4
WAVE OPTICS
Interference of waves of intensity ?
1
and ?
2
:
resultant intensity, ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? = phase
difference.
For Constructive Interference : ?
max
=
? ?
2
2 1
? ? ?
For Destructive interference : ?
min
=
? ?
2
2 1
? ? ?
If sources are incoherent ? = ?
1
+ ?
2
, at each point.
YDSE :
Path difference, ?p = S
2
P – S
1
P = d sin ?
if d < < D =
D
dy
if y << D
for maxima,
?p = n ? ? y = n ? n = 0, ±1, ±2 .......
for minima
?p = ?p =
?
?
?
?
?
?
?
?
?
?
?
?
?
3........ - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
? y =
?
?
?
?
?
?
?
?
?
?
?
?
?
3....... - 2, - -1, n
2
) 1 n 2 (
.... 3......... 2, 1, n
2
) 1 n 2 (
where, fringe width ? =
d
D ?
Here, ? = wavelength in medium.
Highest order maxima : n
max
= ?
?
?
?
?
?
?
d
total number of maxima = 2n
max
+ 1
Highest order minima : n
max
= ?
?
?
?
?
?
?
? 2
1 d
total number of minima = 2n
max
.
Intensity on screen : ? = ?
1
+ ?
2
+
2 1
2 ? ? cos ( ? ?) where, ? ? =
p
2
?
?
?
If ?
1
= ?
2
, ? = 4 ?
1
cos
2
?
?
?
?
?
? ? ?
2
YDSE with two wavelengths ?
1
& ?
2
:
The nearest point to central maxima where the bright fringes coincide:
y = n
1
?
1
= n
2
?
2
= Lcm of ?
1
and ?
2
The nearest point to central maxima where the two dark fringes
coincide,
y = (n
1
–
2
1
) ?
1
= n
2
–
2
1
) ?
2
Optical path difference
?p
opt
= ? ?p
? ? =
?
? 2
?p =
vacuum
2
?
?
?p
opt.
? = ( ? – 1) t.
d
D
= ( ? – 1)t
?
B
.
YDSE WITH OBLIQUE INCIDENCE
In YDSE, ray is incident on the slit at an inclination of ?
0
to
the axis of symmetry of the experimental set-up
?
1
P
1
P
2
B
0
O'
S
2
dsin ?
0
S
1
O
?
0
?
2
We obtain central maxima at a point where, ?p = 0.
or ?
2
= ?
0
.
This corresponds to the point O’ in the diagram.
Hence we have path difference.
?p =
?
?
?
?
?
? ? ? ?
? ? ? ?
? ? ? ?
O' below points for ) sin d(sin
O' & O between points for ) sin (sin d
O above points for ) sin (sin d
0
0
0
... (8.1)
THIN-FILM INTERFERENCE
for interference in reflected light 2 ?d
=
?
?
?
?
?
? ?
?
ce interferen ve constructi for )
2
1
n (
ce interferen e destructiv for n
for interference in transmitted light 2 ?d
=
?
?
?
?
?
? ?
?
ce interferen e destructiv for )
2
1
n (
ce interferen ve constructi for n
Polarisation
?
? ? = tan .(brewster's angle)
? ? + ?
r
= 90°(reflected and refracted rays are mutually
perpendicular.)
? Law of Malus.
I = I
0
cos
2
I = KA
2
cos
2
? Optical activity
? ?
C L
C
t
?
?
? ?
?
?
? = rotation in length L at concentration C.
Diffraction
? a sin ? = (2m + 1) /2 for maxima. where m = 1, 2, 3 ......
? sin ? =
a
m ?
, m = ? ? 1, ? 2, ? 3......... for minima.
? Linear width of central maxima =
a
d 2 ?
? Angular width of central maxima =
a
2 ?
?
2
0
2 /
2 / sin
?
?
?
?
?
?
?
?
? ? ?
where ? =
?
? ? sin a
? Resolving power .
R =
? ?
?
?
? ?
?
1 2
–
where ,
2
2 1
? ? ?
? ? , ? ? = ?
2
- ?
1
Read More