JEE Exam  >  JEE Notes  >  Mock Tests for JEE Main and Advanced 2025  >  JEE Main 2020 Mathematics January 7 Shift 1 Paper & Solutions

JEE Main 2020 Mathematics January 7 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025 PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


   
 
      
   
 
    
 
                       
 
 
PAGE # 1 
 
 
PART : MATHEMATICS 
 
1. Let y = f(x) is a solution of differential equation 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? and f(0) = 0 then f(1) is equal to :  
 ;fn y = f(x) vody lehdj.k 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? dk gy gS rFkk f(0) = 0 rc f(1) dk eku gS& 
 (1) ?n2   (2) 2 + ?n2  (3) 1 + ?n2  (4) 3 + ?n2  
Ans. (3) 
Sol. e
y
 = t 
 e
y
dx
dy
 = 
dx
dt
 
 
dx
dt
 – t  = e
x
    
 IF  = 
?
? dx . 1
e = e
–x
 
 t(e
–x
)  = dx e . e
x x ?
?
 
 e
y–x
 = x + c 
 Put x = 0, y = 0 j[kus ij then c = 1  
 e
y–x
 = x + 1 
 y = x + ?n(x + 1)  
 at x = 1 j[kus ij, y = 1 + ?n(2) 
 
2. If ?? ?is a roots of equation x
2
 + x + 1 = 0 and A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 then A
31
 equal to : 
 ;fn ?? ?lehdj.k x
2
 + x + 1 = 0 dk ,d ewy gS rFkk A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 rc A
31
 cjkcj gS& 
(1) A   (2) A
2
    (3) A
3   
(4) A
4 
Ans. (3) 
Sol. A
2
 = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
2
2
1
1
1 1 1
1
1
1 1 1
3
1
 = 
?
?
?
?
?
?
?
?
?
?
0 1 0
1 0 0
0 0 1
 
 ? A
4
 = I 
 ? A
30
 = A
28
 × A
3
 = A
3 
 
Page 2


   
 
      
   
 
    
 
                       
 
 
PAGE # 1 
 
 
PART : MATHEMATICS 
 
1. Let y = f(x) is a solution of differential equation 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? and f(0) = 0 then f(1) is equal to :  
 ;fn y = f(x) vody lehdj.k 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? dk gy gS rFkk f(0) = 0 rc f(1) dk eku gS& 
 (1) ?n2   (2) 2 + ?n2  (3) 1 + ?n2  (4) 3 + ?n2  
Ans. (3) 
Sol. e
y
 = t 
 e
y
dx
dy
 = 
dx
dt
 
 
dx
dt
 – t  = e
x
    
 IF  = 
?
? dx . 1
e = e
–x
 
 t(e
–x
)  = dx e . e
x x ?
?
 
 e
y–x
 = x + c 
 Put x = 0, y = 0 j[kus ij then c = 1  
 e
y–x
 = x + 1 
 y = x + ?n(x + 1)  
 at x = 1 j[kus ij, y = 1 + ?n(2) 
 
2. If ?? ?is a roots of equation x
2
 + x + 1 = 0 and A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 then A
31
 equal to : 
 ;fn ?? ?lehdj.k x
2
 + x + 1 = 0 dk ,d ewy gS rFkk A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 rc A
31
 cjkcj gS& 
(1) A   (2) A
2
    (3) A
3   
(4) A
4 
Ans. (3) 
Sol. A
2
 = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
2
2
1
1
1 1 1
1
1
1 1 1
3
1
 = 
?
?
?
?
?
?
?
?
?
?
0 1 0
1 0 0
0 0 1
 
 ? A
4
 = I 
 ? A
30
 = A
28
 × A
3
 = A
3 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 2 
 
3. The six digit numbers that can be formed using digits 1, 3, 5, 7, 9 such that each digit is used at least 
once. 
 vadks 1, 3, 5, 7, 9 dk iz;ksx dj cukbZ tk ldus okyh N% vadks dh la[;kvksa dh la[;k fd izR;sd vad de ls de 
,d ckj iz;qDr gks] gksxh& 
Ans. 1800 
Sol. 1, 3, 5, 7, 9 
 For digit to repeat we have 
5
C1 choice  
 And six digits can be arrange in 
2
6
ways. 
 Hence total such numbers = 
2
6 5
 
Sol. 1, 3, 5, 7, 9 
 Ikqujko`fÙk okys vad ds fy, 
5
C1 fodYi gSA  
 vkSj N% vadksa dh O;oLFkk ds rjhds 
2
6
 
 vr% dqy la[;k,sa = 
2
6 5
 
 
 
4. The area that is enclosed in the circle x
2
 + y
2
 = 2 which is not common area enclosed by y = x & y
2
 = x 
is  
 o`Ùk x
2
 + y
2
 = 2 ds vUrxZr ifjc) og {ks=kQy tks y = x & y
2
 = x }kjk ifjc) {ks=kQy ds lkFk mHk;fu”"B u gks& 
 (1) 
12
1
(24 ? – 1)  (2) 
6
1
(12 ? – 1)  (3) 
12
1
(6 ? – 1)  (4) 
12
1
(12 ? – 1) 
Ans. (2) 
Sol. Total area – enclosed area 
 dqqy {ks=kQy – mHk;fu”"B {ks=kQy  
 
 
 
 2 ? – 
?
?
1
0
dx x x
 
 
2 ? – 
1
0
2 2 / 3
2
x
3
x 2
?
?
?
?
?
?
?
?
?
 
2 ? – ?
?
?
?
?
?
?
2
1
3
2
 ?  2 ? – ?
?
?
?
?
?
6
1
 ? 
6
1 12 ? ?
 
 
Page 3


   
 
      
   
 
    
 
                       
 
 
PAGE # 1 
 
 
PART : MATHEMATICS 
 
1. Let y = f(x) is a solution of differential equation 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? and f(0) = 0 then f(1) is equal to :  
 ;fn y = f(x) vody lehdj.k 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? dk gy gS rFkk f(0) = 0 rc f(1) dk eku gS& 
 (1) ?n2   (2) 2 + ?n2  (3) 1 + ?n2  (4) 3 + ?n2  
Ans. (3) 
Sol. e
y
 = t 
 e
y
dx
dy
 = 
dx
dt
 
 
dx
dt
 – t  = e
x
    
 IF  = 
?
? dx . 1
e = e
–x
 
 t(e
–x
)  = dx e . e
x x ?
?
 
 e
y–x
 = x + c 
 Put x = 0, y = 0 j[kus ij then c = 1  
 e
y–x
 = x + 1 
 y = x + ?n(x + 1)  
 at x = 1 j[kus ij, y = 1 + ?n(2) 
 
2. If ?? ?is a roots of equation x
2
 + x + 1 = 0 and A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 then A
31
 equal to : 
 ;fn ?? ?lehdj.k x
2
 + x + 1 = 0 dk ,d ewy gS rFkk A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 rc A
31
 cjkcj gS& 
(1) A   (2) A
2
    (3) A
3   
(4) A
4 
Ans. (3) 
Sol. A
2
 = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
2
2
1
1
1 1 1
1
1
1 1 1
3
1
 = 
?
?
?
?
?
?
?
?
?
?
0 1 0
1 0 0
0 0 1
 
 ? A
4
 = I 
 ? A
30
 = A
28
 × A
3
 = A
3 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 2 
 
3. The six digit numbers that can be formed using digits 1, 3, 5, 7, 9 such that each digit is used at least 
once. 
 vadks 1, 3, 5, 7, 9 dk iz;ksx dj cukbZ tk ldus okyh N% vadks dh la[;kvksa dh la[;k fd izR;sd vad de ls de 
,d ckj iz;qDr gks] gksxh& 
Ans. 1800 
Sol. 1, 3, 5, 7, 9 
 For digit to repeat we have 
5
C1 choice  
 And six digits can be arrange in 
2
6
ways. 
 Hence total such numbers = 
2
6 5
 
Sol. 1, 3, 5, 7, 9 
 Ikqujko`fÙk okys vad ds fy, 
5
C1 fodYi gSA  
 vkSj N% vadksa dh O;oLFkk ds rjhds 
2
6
 
 vr% dqy la[;k,sa = 
2
6 5
 
 
 
4. The area that is enclosed in the circle x
2
 + y
2
 = 2 which is not common area enclosed by y = x & y
2
 = x 
is  
 o`Ùk x
2
 + y
2
 = 2 ds vUrxZr ifjc) og {ks=kQy tks y = x & y
2
 = x }kjk ifjc) {ks=kQy ds lkFk mHk;fu”"B u gks& 
 (1) 
12
1
(24 ? – 1)  (2) 
6
1
(12 ? – 1)  (3) 
12
1
(6 ? – 1)  (4) 
12
1
(12 ? – 1) 
Ans. (2) 
Sol. Total area – enclosed area 
 dqqy {ks=kQy – mHk;fu”"B {ks=kQy  
 
 
 
 2 ? – 
?
?
1
0
dx x x
 
 
2 ? – 
1
0
2 2 / 3
2
x
3
x 2
?
?
?
?
?
?
?
?
?
 
2 ? – ?
?
?
?
?
?
?
2
1
3
2
 ?  2 ? – ?
?
?
?
?
?
6
1
 ? 
6
1 12 ? ?
 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 3 
 
5. If sum of all the coefficient of even powers in (1– x + x
2 
– x
3 
……..x
2n
) (1 + x + x
2
 +x
3
 ……….+ x
2n
 ) is 61 
then n is equal to   
  (1– x + x
2 
– x
3 
……..x
2n
) (1 + x + x
2
 +x
3
 ……….+ x
2n
 ) esa le?kkrksa ds lHkh xq.kkadks dk ;ksxQy 61 gSA rc n dk 
eku cjkcj gS&  
(1) 30   (2) 32   (3) 28   (4) 36 
Ans. (1) 
Sol. Let ekuk (1– x + x
2 
…..) (1 + x + x
2 
……) = a0 + a1 x + a2x
2 
+…… 
 put  x = 1 j[kus ij  
 1(2n+1) = a0 + a1 + a2 +……a2n  ……..(i)
  
 
put  x = –1 j[kus ij 
 
 
 (2n+1??1 = a0 – a1 + a2 +……a2n  ……..(ii)
  
 Form (i) + (ii) ls 
 4n + 2= 2(a0 + a2 +….) 
      = 2 ? ?61 
  ? 2n+1 = 61 ? n = 30
 
 
6. If variance of first n natural numbers is 10 and variance of first m even natural numbers is 16 then the 
value of m + n is  
 izFke n izkd`r la[;kvksa dk izlj.k 10 gS rFkk izFke m le izkd`r la[;kvksa dk izlj.k 16 gS rks m + n dk eku gS& 
Ans. 18  
Sol. Var (1, 2, ……..,n) = 10 ? 
n
n ......... 2 1
2 2 2
? ? ?
– 10
n
n ......... 2 1
2
? ?
?
?
?
?
? ? ? ?
 
 ? 10
2
1 n
6
) 1 n 2 )( 1 n (
2
? ?
?
?
?
?
? ?
?
? ?
 
 ? n
2
 – 1 = 120  ? n = 11 
 Var (2, 4, 6,…………,2m) = 16 ? var (1, 2,……..,m) = 4 
? m
2
 – 1 = 48 ?  m = 7 ? m + n = 18 
 
7. Evaluate 
2 x
lim
?
 
x 1
2
x
1 x x
3 3
12 3 3
?
?
?
?
? ?
 Kkr dhft,A  
Ans. 72 
Sol. Put 
2
x
3 = t j[kus ij 
 ? 
3 t
lim
?
t
1
t
3
12
3
t 4
2
2
? ?
?
 = 
3 t
lim
? ) t 3 ( 3
t ) 9 t ( 4
2 2
? ?
?
= 
3 t
lim
? 3
) t 3 ( t 4
2
?
 = 
3
6 9 4 ? ?
= 72 
 
 
 
Page 4


   
 
      
   
 
    
 
                       
 
 
PAGE # 1 
 
 
PART : MATHEMATICS 
 
1. Let y = f(x) is a solution of differential equation 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? and f(0) = 0 then f(1) is equal to :  
 ;fn y = f(x) vody lehdj.k 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? dk gy gS rFkk f(0) = 0 rc f(1) dk eku gS& 
 (1) ?n2   (2) 2 + ?n2  (3) 1 + ?n2  (4) 3 + ?n2  
Ans. (3) 
Sol. e
y
 = t 
 e
y
dx
dy
 = 
dx
dt
 
 
dx
dt
 – t  = e
x
    
 IF  = 
?
? dx . 1
e = e
–x
 
 t(e
–x
)  = dx e . e
x x ?
?
 
 e
y–x
 = x + c 
 Put x = 0, y = 0 j[kus ij then c = 1  
 e
y–x
 = x + 1 
 y = x + ?n(x + 1)  
 at x = 1 j[kus ij, y = 1 + ?n(2) 
 
2. If ?? ?is a roots of equation x
2
 + x + 1 = 0 and A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 then A
31
 equal to : 
 ;fn ?? ?lehdj.k x
2
 + x + 1 = 0 dk ,d ewy gS rFkk A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 rc A
31
 cjkcj gS& 
(1) A   (2) A
2
    (3) A
3   
(4) A
4 
Ans. (3) 
Sol. A
2
 = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
2
2
1
1
1 1 1
1
1
1 1 1
3
1
 = 
?
?
?
?
?
?
?
?
?
?
0 1 0
1 0 0
0 0 1
 
 ? A
4
 = I 
 ? A
30
 = A
28
 × A
3
 = A
3 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 2 
 
3. The six digit numbers that can be formed using digits 1, 3, 5, 7, 9 such that each digit is used at least 
once. 
 vadks 1, 3, 5, 7, 9 dk iz;ksx dj cukbZ tk ldus okyh N% vadks dh la[;kvksa dh la[;k fd izR;sd vad de ls de 
,d ckj iz;qDr gks] gksxh& 
Ans. 1800 
Sol. 1, 3, 5, 7, 9 
 For digit to repeat we have 
5
C1 choice  
 And six digits can be arrange in 
2
6
ways. 
 Hence total such numbers = 
2
6 5
 
Sol. 1, 3, 5, 7, 9 
 Ikqujko`fÙk okys vad ds fy, 
5
C1 fodYi gSA  
 vkSj N% vadksa dh O;oLFkk ds rjhds 
2
6
 
 vr% dqy la[;k,sa = 
2
6 5
 
 
 
4. The area that is enclosed in the circle x
2
 + y
2
 = 2 which is not common area enclosed by y = x & y
2
 = x 
is  
 o`Ùk x
2
 + y
2
 = 2 ds vUrxZr ifjc) og {ks=kQy tks y = x & y
2
 = x }kjk ifjc) {ks=kQy ds lkFk mHk;fu”"B u gks& 
 (1) 
12
1
(24 ? – 1)  (2) 
6
1
(12 ? – 1)  (3) 
12
1
(6 ? – 1)  (4) 
12
1
(12 ? – 1) 
Ans. (2) 
Sol. Total area – enclosed area 
 dqqy {ks=kQy – mHk;fu”"B {ks=kQy  
 
 
 
 2 ? – 
?
?
1
0
dx x x
 
 
2 ? – 
1
0
2 2 / 3
2
x
3
x 2
?
?
?
?
?
?
?
?
?
 
2 ? – ?
?
?
?
?
?
?
2
1
3
2
 ?  2 ? – ?
?
?
?
?
?
6
1
 ? 
6
1 12 ? ?
 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 3 
 
5. If sum of all the coefficient of even powers in (1– x + x
2 
– x
3 
……..x
2n
) (1 + x + x
2
 +x
3
 ……….+ x
2n
 ) is 61 
then n is equal to   
  (1– x + x
2 
– x
3 
……..x
2n
) (1 + x + x
2
 +x
3
 ……….+ x
2n
 ) esa le?kkrksa ds lHkh xq.kkadks dk ;ksxQy 61 gSA rc n dk 
eku cjkcj gS&  
(1) 30   (2) 32   (3) 28   (4) 36 
Ans. (1) 
Sol. Let ekuk (1– x + x
2 
…..) (1 + x + x
2 
……) = a0 + a1 x + a2x
2 
+…… 
 put  x = 1 j[kus ij  
 1(2n+1) = a0 + a1 + a2 +……a2n  ……..(i)
  
 
put  x = –1 j[kus ij 
 
 
 (2n+1??1 = a0 – a1 + a2 +……a2n  ……..(ii)
  
 Form (i) + (ii) ls 
 4n + 2= 2(a0 + a2 +….) 
      = 2 ? ?61 
  ? 2n+1 = 61 ? n = 30
 
 
6. If variance of first n natural numbers is 10 and variance of first m even natural numbers is 16 then the 
value of m + n is  
 izFke n izkd`r la[;kvksa dk izlj.k 10 gS rFkk izFke m le izkd`r la[;kvksa dk izlj.k 16 gS rks m + n dk eku gS& 
Ans. 18  
Sol. Var (1, 2, ……..,n) = 10 ? 
n
n ......... 2 1
2 2 2
? ? ?
– 10
n
n ......... 2 1
2
? ?
?
?
?
?
? ? ? ?
 
 ? 10
2
1 n
6
) 1 n 2 )( 1 n (
2
? ?
?
?
?
?
? ?
?
? ?
 
 ? n
2
 – 1 = 120  ? n = 11 
 Var (2, 4, 6,…………,2m) = 16 ? var (1, 2,……..,m) = 4 
? m
2
 – 1 = 48 ?  m = 7 ? m + n = 18 
 
7. Evaluate 
2 x
lim
?
 
x 1
2
x
1 x x
3 3
12 3 3
?
?
?
?
? ?
 Kkr dhft,A  
Ans. 72 
Sol. Put 
2
x
3 = t j[kus ij 
 ? 
3 t
lim
?
t
1
t
3
12
3
t 4
2
2
? ?
?
 = 
3 t
lim
? ) t 3 ( 3
t ) 9 t ( 4
2 2
? ?
?
= 
3 t
lim
? 3
) t 3 ( t 4
2
?
 = 
3
6 9 4 ? ?
= 72 
 
 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 4 
 
8. If f(x) is continuous and differentiable in x ? [–7, 0] and f ?(x) ?? ?? ?x ? [–7, 0], also f(–7) = –3 then range 
of f(–1) + f(0)  
 ;fn f(x), x ? [–7, 0] esa lrr~ rFkk vodyuh; gS rFkk f ?(x) ???? ?x ? [–7, 0] vkSj f(–7) = –3 rks f(–1) + f(0) dk 
ifjlj gS& 
 (1) [–5, –7]  (2) (– ?, 6]  (3) (– ?, 20]  (4) [-5, 3] 
Ans. (3) 
Sol. Lets use LMVT for x ? [–7, –1] esa ykaxzkt e/;eku izes; ls 
 2
) 7 1 (
) 7 ( f ) 1 ( f
?
? ?
? ? ?
 
 2
6
3 ) 1 ( f
?
? ?
 ? f(–1) ? 9 
 Also use LMVT for x ? [–7, 0] esa ykaxzkt e/;eku izes; ls 
 2
) 7 0 (
) 7 ( f ) 0 ( f
?
?
? ?
 
 2
7
3 ) 0 ( f
?
?
 ? f(0) ? 11  ?  f(0) + f(–1) ? 20 
 
9. If y = mx + 4 is common tangent to parabolas y
2
 = 4x and x
2
 = 2by. Then value of b is 
 ;fn y = mx + 4 ijoy; y
2
 = 4x rFkk x
2
 = 2by dh mHk;fu”"B Li’'kZ js[kk gS rks b dk eku gS&  
 (1) –64   (2) –32   (3) –128  (4) 16 
Ans. (3) 
Sol. y = mx + 4  ……(i) 
 y
2
 = 4x tangent dh Li'kZ js[kk y = mx + 
m
a
 ? y = mx + 
m
1
 ………(ii) 
 from (i) and (ii) ls  
  4 = 
m
1
? m = 
4
1
 
 So line y = 
4
1
x + 4 is also tangent to parabola x
2
 = 2by, so solve  
 vr% js[kk y = 
4
1
x + 4 ijoy; x
2
 = 2by dh Li'kZ js[kk gS vr%  
 x
2
 = 2b ?
?
?
?
?
? ?
4
16 x
  
 ? 2x
2
 – bx – 16b = 0 ? D = 0 ? b
2
 – 4 × 2 × (–16b) = 0 
 ? b
2
 + 32 × 4b = 0 
 b = –128, b = 0 (not possible vlaHko) 
 
 
 
 
Page 5


   
 
      
   
 
    
 
                       
 
 
PAGE # 1 
 
 
PART : MATHEMATICS 
 
1. Let y = f(x) is a solution of differential equation 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? and f(0) = 0 then f(1) is equal to :  
 ;fn y = f(x) vody lehdj.k 
x y
e 1
dx
dy
e ? ?
?
?
?
?
?
? dk gy gS rFkk f(0) = 0 rc f(1) dk eku gS& 
 (1) ?n2   (2) 2 + ?n2  (3) 1 + ?n2  (4) 3 + ?n2  
Ans. (3) 
Sol. e
y
 = t 
 e
y
dx
dy
 = 
dx
dt
 
 
dx
dt
 – t  = e
x
    
 IF  = 
?
? dx . 1
e = e
–x
 
 t(e
–x
)  = dx e . e
x x ?
?
 
 e
y–x
 = x + c 
 Put x = 0, y = 0 j[kus ij then c = 1  
 e
y–x
 = x + 1 
 y = x + ?n(x + 1)  
 at x = 1 j[kus ij, y = 1 + ?n(2) 
 
2. If ?? ?is a roots of equation x
2
 + x + 1 = 0 and A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 then A
31
 equal to : 
 ;fn ?? ?lehdj.k x
2
 + x + 1 = 0 dk ,d ewy gS rFkk A = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
1
1
1 1 1
3
1
 rc A
31
 cjkcj gS& 
(1) A   (2) A
2
    (3) A
3   
(4) A
4 
Ans. (3) 
Sol. A
2
 = 
?
?
?
?
?
?
?
?
?
?
? ?
? ?
?
?
?
?
?
?
?
?
?
?
? ?
? ?
2
2
2
2
1
1
1 1 1
1
1
1 1 1
3
1
 = 
?
?
?
?
?
?
?
?
?
?
0 1 0
1 0 0
0 0 1
 
 ? A
4
 = I 
 ? A
30
 = A
28
 × A
3
 = A
3 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 2 
 
3. The six digit numbers that can be formed using digits 1, 3, 5, 7, 9 such that each digit is used at least 
once. 
 vadks 1, 3, 5, 7, 9 dk iz;ksx dj cukbZ tk ldus okyh N% vadks dh la[;kvksa dh la[;k fd izR;sd vad de ls de 
,d ckj iz;qDr gks] gksxh& 
Ans. 1800 
Sol. 1, 3, 5, 7, 9 
 For digit to repeat we have 
5
C1 choice  
 And six digits can be arrange in 
2
6
ways. 
 Hence total such numbers = 
2
6 5
 
Sol. 1, 3, 5, 7, 9 
 Ikqujko`fÙk okys vad ds fy, 
5
C1 fodYi gSA  
 vkSj N% vadksa dh O;oLFkk ds rjhds 
2
6
 
 vr% dqy la[;k,sa = 
2
6 5
 
 
 
4. The area that is enclosed in the circle x
2
 + y
2
 = 2 which is not common area enclosed by y = x & y
2
 = x 
is  
 o`Ùk x
2
 + y
2
 = 2 ds vUrxZr ifjc) og {ks=kQy tks y = x & y
2
 = x }kjk ifjc) {ks=kQy ds lkFk mHk;fu”"B u gks& 
 (1) 
12
1
(24 ? – 1)  (2) 
6
1
(12 ? – 1)  (3) 
12
1
(6 ? – 1)  (4) 
12
1
(12 ? – 1) 
Ans. (2) 
Sol. Total area – enclosed area 
 dqqy {ks=kQy – mHk;fu”"B {ks=kQy  
 
 
 
 2 ? – 
?
?
1
0
dx x x
 
 
2 ? – 
1
0
2 2 / 3
2
x
3
x 2
?
?
?
?
?
?
?
?
?
 
2 ? – ?
?
?
?
?
?
?
2
1
3
2
 ?  2 ? – ?
?
?
?
?
?
6
1
 ? 
6
1 12 ? ?
 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 3 
 
5. If sum of all the coefficient of even powers in (1– x + x
2 
– x
3 
……..x
2n
) (1 + x + x
2
 +x
3
 ……….+ x
2n
 ) is 61 
then n is equal to   
  (1– x + x
2 
– x
3 
……..x
2n
) (1 + x + x
2
 +x
3
 ……….+ x
2n
 ) esa le?kkrksa ds lHkh xq.kkadks dk ;ksxQy 61 gSA rc n dk 
eku cjkcj gS&  
(1) 30   (2) 32   (3) 28   (4) 36 
Ans. (1) 
Sol. Let ekuk (1– x + x
2 
…..) (1 + x + x
2 
……) = a0 + a1 x + a2x
2 
+…… 
 put  x = 1 j[kus ij  
 1(2n+1) = a0 + a1 + a2 +……a2n  ……..(i)
  
 
put  x = –1 j[kus ij 
 
 
 (2n+1??1 = a0 – a1 + a2 +……a2n  ……..(ii)
  
 Form (i) + (ii) ls 
 4n + 2= 2(a0 + a2 +….) 
      = 2 ? ?61 
  ? 2n+1 = 61 ? n = 30
 
 
6. If variance of first n natural numbers is 10 and variance of first m even natural numbers is 16 then the 
value of m + n is  
 izFke n izkd`r la[;kvksa dk izlj.k 10 gS rFkk izFke m le izkd`r la[;kvksa dk izlj.k 16 gS rks m + n dk eku gS& 
Ans. 18  
Sol. Var (1, 2, ……..,n) = 10 ? 
n
n ......... 2 1
2 2 2
? ? ?
– 10
n
n ......... 2 1
2
? ?
?
?
?
?
? ? ? ?
 
 ? 10
2
1 n
6
) 1 n 2 )( 1 n (
2
? ?
?
?
?
?
? ?
?
? ?
 
 ? n
2
 – 1 = 120  ? n = 11 
 Var (2, 4, 6,…………,2m) = 16 ? var (1, 2,……..,m) = 4 
? m
2
 – 1 = 48 ?  m = 7 ? m + n = 18 
 
7. Evaluate 
2 x
lim
?
 
x 1
2
x
1 x x
3 3
12 3 3
?
?
?
?
? ?
 Kkr dhft,A  
Ans. 72 
Sol. Put 
2
x
3 = t j[kus ij 
 ? 
3 t
lim
?
t
1
t
3
12
3
t 4
2
2
? ?
?
 = 
3 t
lim
? ) t 3 ( 3
t ) 9 t ( 4
2 2
? ?
?
= 
3 t
lim
? 3
) t 3 ( t 4
2
?
 = 
3
6 9 4 ? ?
= 72 
 
 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 4 
 
8. If f(x) is continuous and differentiable in x ? [–7, 0] and f ?(x) ?? ?? ?x ? [–7, 0], also f(–7) = –3 then range 
of f(–1) + f(0)  
 ;fn f(x), x ? [–7, 0] esa lrr~ rFkk vodyuh; gS rFkk f ?(x) ???? ?x ? [–7, 0] vkSj f(–7) = –3 rks f(–1) + f(0) dk 
ifjlj gS& 
 (1) [–5, –7]  (2) (– ?, 6]  (3) (– ?, 20]  (4) [-5, 3] 
Ans. (3) 
Sol. Lets use LMVT for x ? [–7, –1] esa ykaxzkt e/;eku izes; ls 
 2
) 7 1 (
) 7 ( f ) 1 ( f
?
? ?
? ? ?
 
 2
6
3 ) 1 ( f
?
? ?
 ? f(–1) ? 9 
 Also use LMVT for x ? [–7, 0] esa ykaxzkt e/;eku izes; ls 
 2
) 7 0 (
) 7 ( f ) 0 ( f
?
?
? ?
 
 2
7
3 ) 0 ( f
?
?
 ? f(0) ? 11  ?  f(0) + f(–1) ? 20 
 
9. If y = mx + 4 is common tangent to parabolas y
2
 = 4x and x
2
 = 2by. Then value of b is 
 ;fn y = mx + 4 ijoy; y
2
 = 4x rFkk x
2
 = 2by dh mHk;fu”"B Li’'kZ js[kk gS rks b dk eku gS&  
 (1) –64   (2) –32   (3) –128  (4) 16 
Ans. (3) 
Sol. y = mx + 4  ……(i) 
 y
2
 = 4x tangent dh Li'kZ js[kk y = mx + 
m
a
 ? y = mx + 
m
1
 ………(ii) 
 from (i) and (ii) ls  
  4 = 
m
1
? m = 
4
1
 
 So line y = 
4
1
x + 4 is also tangent to parabola x
2
 = 2by, so solve  
 vr% js[kk y = 
4
1
x + 4 ijoy; x
2
 = 2by dh Li'kZ js[kk gS vr%  
 x
2
 = 2b ?
?
?
?
?
? ?
4
16 x
  
 ? 2x
2
 – bx – 16b = 0 ? D = 0 ? b
2
 – 4 × 2 × (–16b) = 0 
 ? b
2
 + 32 × 4b = 0 
 b = –128, b = 0 (not possible vlaHko) 
 
 
 
 
   
 
      
   
 
    
 
                       
 
 
PAGE # 5 
 
10. If ? and ? are the roots of equation (k+1) tan
2 
x – ? 2 tanx = 1 ?– k and tan
2
 ( ?+ ?) = 50. Find value of 
? . 
 ;fn ? rFkk ? lehdj.k (k+1) tan
2 
x – ? 2 tanx = 1 ?– k ds ewy gS rFkk tan
2
 ( ?+ ?) = 50 rks ? ?dk eku gS& 
(1) 10   (2) 5  (3) 7    (4) 12 
Ans. (1) 
(k+1) tan
2
 x – ? 2 tanx + (k–1)=0  
tan ? ?+ tan ? ?= 
1 k
2
?
?
 
tan ? ?tan ? = 
1 k
1 k
?
?
 
tan ( ?+ ?)= (k–1)=0
2
2
2
1 k
1 k
1
1 k
2
?
?
?
?
?
?
?
?
?
 
tan
2
 ( ?+ ?) = 50
2
2
?
?
 
? ?= 10  
 
11. Find image of point (2, 1, 6) in the plane containing points (2, 1, 0), (6, 3, 3) and (5, 2, 2) 
 fcUnqvksa (2, 1, 0), (6, 3, 3) rFkk (5, 2, 2) dks lekfgr djus okys lery esa fcUnq (2, 1, 6) dk izfrfcEc gS& 
 (1) (6, 5, –2)  (2) (6, –5, 2)  (3) (2, –3, 4)  (4) (2, –5, 6) 
Ans. (1) 
 
Sol. Plane is lery x + y – 2z = 3 ? 
1
2 x ?
= 
1
1 y ?
= 
2
6 z
?
?
=
6
) 3 12 1 2 ( 2 ? ? ? ?
? (x, y, z) = (6, 5, –2)  
12. Let ekuk (x)
k
 + (y)
k
 = (a)
k
 where tgka a, k > 0 and rFkk 0
x
y
dx
dy 3
1
? ?
?
?
?
?
?
? , then find rc k cjkcj gS&   
 (1) 
3
1
   (2) 
3
2
   (3) 
3
4
   (1)  2  
Ans. (2)  
Sol. k.x
 k – 1 
+ k.y
 k – 1
dx
dy
= 0 
 
1 k
y
x
dx
dy
?
?
?
?
?
?
?
?
?
? ? 
 
1 k
y
x
dx
dy
?
?
?
?
?
?
?
?
?
? =0 
 k – 1 = 
3
1
? 
 k = 1 
3
1
? = 
3
2
  
Read More
357 docs|148 tests

Top Courses for JEE

Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Exam

,

mock tests for examination

,

practice quizzes

,

Objective type Questions

,

JEE Main 2020 Mathematics January 7 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Extra Questions

,

JEE Main 2020 Mathematics January 7 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

past year papers

,

MCQs

,

video lectures

,

Viva Questions

,

Summary

,

Semester Notes

,

JEE Main 2020 Mathematics January 7 Shift 1 Paper & Solutions | Mock Tests for JEE Main and Advanced 2025

,

Free

,

shortcuts and tricks

,

Important questions

,

study material

,

pdf

,

ppt

,

Sample Paper

,

Previous Year Questions with Solutions

;