UPSC Exam  >  UPSC Notes  >  Civil Engineering Optional Notes for UPSC  >  Kinematics in Cartesian Co-ordinates

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC PDF Download

Two Dimensional Motion (also called Planar Motion) is any motion in which the objects being analyzed stay in a single plane. When analyzing such motion, we must first decide the type of coordinate system we wish to use. The most common options in engineering are rectangular coordinate systems, normal-tangential coordinate systems, and polar coordinate systems. Any planar motion can potentially be described with any of the three systems, though each choice has potential advantages and disadvantages.

The rectangular coordinate system (also sometimes called the Cartesian coordinate system) is the most intuitive approach to describing motion. In rectangular coordinate systems we have an x and a y axis. These axes remain fixed to some origin point in the environment and they do not change over time. Instead, the bodies we are analyzing usually move relative to these fixed axes. An example of a body with a rectangular coordinate systems is shown in the figure below.

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

In the rectangular coordinate system we have a fixed origin point at o, the particle at point p, and the x and y directions, which must be perpendicular to one another. The vector r is the vector going from o to p. The component of this vector in the x direction is x and the component of this vector in the y direction is y. We usually describe position in terms of x and y at any given point in time. The vectors i and j represent unit vectors (vectors with a length of one) in the x and y directions respectively.

Rectangular coordinates work best for systems where all forces maintain a constant direction. The most common example of this is projectile motion, where gravity (the only force in these systems) maintains a constant downward direction. An example of a system where the forces change direction over time would be something like a car going around a curve in the road. In this case the friction force at the tires is going to be rotating with the car. The car problem will therefore be better suited to the use of normal-tangential or polar coordinate systems.

When describing the position of a point in rectangular coordinate systems, we are going to start by describing both x and y coordinates in a vector form. For this, the values x and y represent distances and the unit vectors i and j are used to indicate which distance corresponds with which direction. This may seem redundant, but remember when solving actual problems, x and y will just be numbers.

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

Just as with one dimensional problems, if we take the derivative of the position equation, we will find the velocity equation. If we take the derivative of the velocity equation we will wind up with the acceleration equation. Also like one dimensional problems, we can use integration to move in the other direction, moving from an acceleration equations to a velocity equation to a position equation.

The unit vectors add a new element in two dimensions, but since the unit vectors don't change over time (aka. they are constants), we treat them like we would any other constant for derivatives and integrals. The resulting velocity and acceleration equations are as follows.

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

The above equations are vector equations with velocities and accelerations broken down into x and y components. Since the x an y directions are perpendicular, they are also independent (movement in the x direction doesn't impact movement in the y direction and vice versa). This essentially means we can split our vector equation into a set of two scalar equations. To do this we just put everything in front of the i unit vectors in the x equations and everything in front of the j unit vectors in the y equations.

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

Once we have the everything split into x and y directions we can just use the same processes we used for one dimensional motion to move from x, to x dot, to x double dot and from y, to y dot, to y double dot. The variable linking the two equations is time t, or time in both the x and y equations.

The document Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC is a part of the UPSC Course Civil Engineering Optional Notes for UPSC.
All you need of UPSC at this link: UPSC
350 videos|464 docs|2 tests

Top Courses for UPSC

350 videos|464 docs|2 tests
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Free

,

shortcuts and tricks

,

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

,

pdf

,

past year papers

,

mock tests for examination

,

MCQs

,

study material

,

video lectures

,

Exam

,

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

,

Viva Questions

,

Extra Questions

,

practice quizzes

,

Sample Paper

,

Kinematics in Cartesian Co-ordinates | Civil Engineering Optional Notes for UPSC

,

Semester Notes

,

ppt

,

Previous Year Questions with Solutions

,

Important questions

,

Summary

,

Objective type Questions

;