The Lanthanides were first discovered in 1787 when a unusual black mineral was found in Ytterby, Sweden. This mineral, now known as Gadolinite, was later separated into the various Lanthanide elements. In 1794, Professor Gadolin obtained yttria, an impure form of yttrium oxide, from the mineral. In 1803, Berzelius and Klaproth secluded the first Cerium compound. Later, Moseley used an x-ray spectra of the elements to prove that there were fourteen elements between Lanthanum and Hafnium. The rest of the elements were later separated from the same mineral. These elements were first classified as ‘rare earth’ due to the fact that obtained by reasonably rare minerals. However, this is can be misleading since the Lanthanide elements have a practically unlimited abundance. The term Lanthanides was adopted, originating from the first element of the series, Lanthanum.
Like any other series in the periodic table, such as the Alkali metals or the Halogens, the Lanthanides share many similar characteristics.
These characteristics include the following:
Table 1: Electron Configurations of the Lanthanide Elements
One property of the Lanthanides that affect how they will react with other elements is called the basicity. Basicity is a measure of the ease at which an atom will lose electrons. In another words, it would be the lack of attraction that a cation has for electrons or anions. In simple terms, basicity refers to have much of a base a species is.
For the Lanthanides, the basicity series is the following:
La3+ > Ce3+ > Pr3+ > Nd3+ > Pm3+ > Sm3+ > Eu3+ > Gd3+ > Tb3+ > Dy3+ > Ho3+ > Er3+ > Tm3+ > Yb3+ > Lu3+
In other words, the basicity decreases as the atomic number increases. Basicity differences are shown in the solubility of the salts and the formation of the complex species. Another property of the Lanthanides is their magnetic characteristics. The major magnetic properties of any chemical species are a result of the fact that each moving electron is a micromagnet. The species are either diamagnetic, meaning they have no unpaired electrons, or paramagnetic, meaning that they do have some unpaired electrons. The diamagnetic ions are: La3+, Lu3+, Yb2+ and Ce4+. The rest of the elements are paramagnetic.
The metals have a silvery shine when freshly cut. However, they can tarnish quickly in air, especially Ce, La and Eu. These elements react with water slowly in cold, though that reaction can happen quickly when heated. This is due to their electropositive nature.
The Lanthanides have the following reactions:
Table 2: Properties of the Lathanides
The size of the atomic and ionic radii is determined by both the nuclear charge and by the number of electrons that are in the electronic shells. Within those shells, the degree of occupancy will also affect the size. In the Lanthanides, there is a decrease in atomic size from La to Lu. This decrease is known as the Lanthanide Contraction. The trend for the entire periodic table states that the atomic radius decreases as you travel from left to right. Therefore, the Lanthanides share this trend with the rest of the elements.
Table 3: Periodic Trends
The color that a substance appears is the color that is reflected by the substance. This means that if a substance appears green, the green light is being reflected. The wavelength of the light determines if the light with be reflected or absorbed. Similarly, the splitting of the orbitals can affect the wavelength that can be absorbed. This is turn would be affected by the amount of unpaired electrons.
Table 4: Unpaired Electrons and Color
Each known Lanthanide mineral contains all the members of the series. However, each mineral contains different concentrations of the individual Lanthanides.
The three main mineral sources are the following:
In all the ores, the atoms with a even atomic number are more abundant. This allows for more nuclear stability, as explained in the Oddo-Harkins rule. The Oddo-Harkins rule simply states that the abundance of elements with an even atomic number is greater than the abundance of elements with an odd atomic number. In order to obtain these elements, the minerals must go through a separating process, known as separation chemistry. This can be done with selective reduction or oxidation. Another possibility is an ion-exchange method.
The Oddo-Harkins Rule
The abundance of elements with an even atomic number is greater than the abundance of elements with an odd atomic number.
The pure metals of the Lanthanides have little use. However, the alloys of the metals can be very useful. For example, the alloys of Cerium have been used for metallurgical applications due to their strong reducing abilities.
The Lanthanides can also be used for ceramic purposes. The almost glass-like covering of a ceramic dish can be created with the lanthanides. They are also used to improve the intensity and color balance of arc lights.
Like the Actinides, the Lanthanides can be used for nuclear purposes. The hydrides can be used as hydrogen-moderator carriers. The oxides can be used as diluents in nuclear fields. The metals are good for being used as structural components. The can also be used for structural-alloy-modifying components of reactors. It is also possible for some elements, such as Tm, to be used as portable x-ray sources. Other elements, such as Eu, can be used as radiation sources.
Example 1: Which elements are considered to be Lanthanides?
Ans: Elements Lanthanum (57) through Lutetium (71) on the periodic table are considered to be Lanthanides.
Example 2: How do the Lanthanides react with oxygen?
Ans: Lanthanides tend to react with oxygen to form oxides. The reaction at room temperature can be slow while heat can cause the reaction to happen rapidly.
Example 3: What causes the Lanthanide Contraction?
Ans: The Lanthanide Contraction refers to the decrease in atomic size of the elements in which electrons fill the f-subshell. Since the f sub-shell is not shielded, the atomic size will decrease as the nuclear charge still increases.
Example 4: Why do Lanthanides exhibit strong electromagnetic and light properties?
Ans: Lanthanides exhibit strong electromagnetic and light properties because of the presence of unpaired electrons in the f-orbitals. The majority of the Lanthanides are paramagnetic, which means that they have strong magnetic fields.
Example 5: What do the Lanthanides have in common with the Noble Gases?
Ans: Both the Lanthanides and Noble Gases tend to bind with more electronegative atoms, such as Oxygen or Fluorine.
1. What is the electron configuration of lanthanides? |
2. What are the properties of lanthanides? |
3. What are some common chemical reactions of lanthanides? |
4. What are alloys and how are lanthanides used in alloys? |
5. How do lanthanides occur in nature? |
|
Explore Courses for UPSC exam
|