UPSC  >  Science & Technology for UPSC CSE  >  NCERT Solutions: Heredity & Evolution

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

Document Description: NCERT Solutions: Heredity & Evolution for UPSC 2022 is part of Science & Technology for UPSC CSE preparation. The notes and questions for NCERT Solutions: Heredity & Evolution have been prepared according to the UPSC exam syllabus. Information about NCERT Solutions: Heredity & Evolution covers topics like Page No. 143, Page No. 147, Page No. 150, Page No. 151, Page No. 156, Page No. 158, Page No. 159 and NCERT Solutions: Heredity & Evolution Example, for UPSC 2022 Exam. Find important definitions, questions, notes, meanings, examples, exercises and tests below for NCERT Solutions: Heredity & Evolution.

Introduction of NCERT Solutions: Heredity & Evolution in English is available as part of our Science & Technology for UPSC CSE for UPSC & NCERT Solutions: Heredity & Evolution in Hindi for Science & Technology for UPSC CSE course. Download more important topics related with notes, lectures and mock test series for UPSC Exam by signing up for free. UPSC: NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC
Table of contents
Page No. 143
Page No. 147
Page No. 150
Page No. 151
Page No. 156
Page No. 158
Page No. 159
1 Crore+ students have signed up on EduRev. Have you?

Page No. 143

Q.1. If a trait A exists in 10% of a population of an asexually reproducing species and a trait B exists in 60% of the same population, which trait is likely to have arisen earlier?
Ans.

  • In asexual reproduction, the reproducing cells produce a copy of their DNA through some chemical reactions. 
  • However, this copying of DNA is not accurate and therefore, the newly formed DNA has some variations.
    NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC
  • It can be easily observed in the above figure that in asexual reproduction, very few variations are allowed. 
  • Therefore, if a trait is present in only 10% of the population, it is more likely that the trait has arisen recently. 
  • Hence, it can be concluded that trait B that exists in 60% of the same population has arisen earlier than trait A.

Q.2. How does the creation of variations in a species promote survival?
Ans.

  • Sometimes for a species, the environmental conditions change so drastically that their survival becomes difficult. 
    Example: If the temperature of water increases suddenly, most of the bacteria living in that water would die. Only few variants resistant to heat would be able to survive. If these variants were not there, then the entire species of bacteria would have been destroyed. 
  • Thus, these variants help in the survival of the species.
  • However, not all variations are useful. 
  • Therefore, these are not necessarily beneficial for the individual organisms.
Page No. 147

Q.1. How do Mendel’s experiments show that traits may be dominant or recessive?
Ans.

  • Mendel selected true breeding tall (TT) and dwarf (tt) pea plants. Then, he crossed these two plants. 
  • The seeds formed after fertilization were grown and these plants that were formed represent the first filial or F1 generation
  • All the F1 plants obtained were tall.
  • Then, Mendel self-pollinated the F1 plants and observed that all plants obtained in the F2 generation were not tall. 
  • Instead, one-fourth of the F2 plants were short.
    NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC
  • From this experiment, Mendel concluded that the F1 tall plants were not true-breeding. 
  • They were carrying traits of both short height and tall height. They appeared tall only because the tall trait is dominant over the dwarf trait.

Q.2. How do Mendel’s experiments show that traits are inherited independently?
Ans.

  • Mendel crossed pea plants having round green seeds (RRyy) with pea plants having wrinkled yellow seeds (rrYY).
  • Since the F1 plants are formed after crossing pea plants having green round seeds and pea plants having yellow wrinkled seeds, F1 generation will have both these characters in them. 
  • However, as we know that yellow seed colour and round seeds are dominant characters, therefore, the F1 plants will have yellow round seeds.
  • Then this F1 progeny was self-pollinated and the F2 progeny was found to have yellow round seeds, green round seeds, yellow wrinkled seeds, and green wrinkled seeds in the ratio of 9:3:3:1. 
    NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC
  • In the above cross, more than two factors are involved, and these are independently inherited.

Q.3. A man with blood group A marries a woman with blood group O and their daughter has blood group O. Is this information enough to tell you which of the traits − blood group A or O − is dominant? Why or why not?
Ans. 

  • No. This information is not sufficient to determine which of the traits − blood group A or O − is dominant
  • This is because we do not know about the blood group of all the progeny.
  • Blood group A can be genotypically AA or AO. Hence, the information is incomplete to draw any such conclusion.

Q.4. How is the sex of the child determined in human beings?
Ans.

  • In human beings, the females have two X chromosomes and the males have one X and one Y chromosome
  • Therefore, the females are XX and the males are XY.
  • The gametes, as we know, receive half of the chromosomes. 
  • The male gametes have 22 autosomes and either X or Y sex chromosome.
    Type of male gametes: 22+X OR 22+ Y.
  • However, since the females have XX sex chromosomes, their gametes can only have X sex chromosome.
  • Type of female gamete: 22+ X
    NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC
  • Thus, the mother provides only X chromosomes. The sex of the baby is determined by the type of male gamete (X or Y) that fuses with the X chromosome of the female.
Page No. 150

Q.1. What are the different ways in which individuals with a particular trait may increase in a population?
Ans. 
Individuals with a particular trait may increase in a population as a result of the following:

(a) Natural selection: if an attribute is useful to a population, it’ll increase naturally.

For example – mosquitoes which are resilient against a particular pesticide will pass on its genes, so that future generations become resistant as well. The mosquitoes which are affected by the pesticide die out.

(b) Genetic drift: if a species faces a catastrophic event where most of the population is wiped out, the surviving population can pass on their traits to the following generations. This may result in a rise of the attribute within the population.
(c) There are cases in which some traits are not inherited but acquired by an individual during its lifetime. The acquired characters help the individual to survive better and increase its population.


Q.2. Why are traits acquired during the lifetime of an individual not inherited?

Ans. In the case of reproduction, Progeny receives the germ cells from the parent. So, any changes within the germ cells (leading to variation or new traits) are inherited by the progeny. Some traits are acquired by an individual during its lifetime due to environmental influences or other external factors. An acquired trait involves changes in non-reproductive tissues (somatic cells). Thus, these traits cannot be inherited because acquired traits do not involve changes in the germ cells.


Q.3. Why are the small numbers of surviving tigers a cause of worry from the point of view of genetics?
Ans. 
As the size of the tiger population decreases, the genetic pool of the species decreases too. This results in a limitation on the variations which will be introduced within the genetic makeup of the tigers. This lack of variation will result in serious implications. For example, if an illness spreads within the tiger population, it can potentially wipe out the whole population, possibly causing their extinction.


Page No. 151

Q.1. What factors could lead to the rise of a new species?

Ans. Speciation factors responsible: 

(a) Geographical isolation

  • If a population of a species splits into two due to some geographical barrier, the gene flow between the two sub-populations decreases and each of the sub-populations becomes very different from the other; they lose the ability to reproduce with each other and become different species. 

(b) Genetic drift

  • It refers to any accidental change in the frequency of certain genes especially in small populations.
  • Genetic drift can accumulate different changes in the two sub-populations. 
  • The changes may be in the number of chromosomes, where the gametes of the two groups cannot fuse with each other; each becomes a new species. 

(c) Natural selection 

  • Nature selects those individuals in the population of a species, which are better adapted to survive and reproduce in the given environment.
  • The frequency of certain genes changes in the population leading, to changes in the characteristics and making them a new species.

Q.2. Will geographical isolation be a major factor in the speciation of a self-pollinating plant species? Why or why not?
Ans. 

  • Geographical segregation cannot be a major factor in the speciation of self-pollinating plant species because no new trait can become a part of the genotype in self-pollinating plant species. 
  • However, there are chances of some environmental changes which may lead to some variations.

Q.3. Will geographical isolation be a major factor in the speciation of an organism that reproduces asexually? Why or why not?
Ans.

  • Geographical isolation prevents gene flow between populations of a species whereas asexual reproduction generally involves only one individual. In an asexually reproducing organism, variations can occur only when the copying of DNA is not accurate. 
  • Therefore, geographical isolation cannot prevent the formation of new species in an asexually reproducing organism.
Page No. 156

Q.1. Give an example of characteristics being used to determine how close two species are in evolutionary terms.
Ans.

  • The presence of feathers in dinosaurs and birds indicates that they are evolutionarily related. 
  • Dinosaurs had feathers, not for flying but instead, these feathers provided insulation to these warm-blooded animals. 
  • However, the feathers in birds are used for flight. 
  • This proves that reptiles and birds are closely related and that the evolution of wings started in reptiles.

Q.2. Can the wing of a butterfly and the wing of a bat be considered homologous organs? Why or why not?
Ans. 
The wing of a butterfly and the wing of a bat cannot be considered homologous organs as they do not share a common ancestor. Even though both structures aid in flying, they have evolved separately. To prove this, the wings of a butterfly are composed of two chitinous membranes, whereas wings of a bat are composed of bony skeleton, complete with blood vessels. Hence, these aren’t homologous organs but rather analogous organs.


Q.3. What are fossils? What do they tell us about the process of evolution?
Ans. 
Fossils are the preserved remains of animals or plants or other organisms that died out millions of years ago. These fossils tell us about a lot of extinct animals and also give insights into how evolution might have occurred. Fossils can be used to understand how an organism would have lived and what it may have looked like. More importantly, we can correlate with fossils as well as extant organisms to understand their relationships. For instance, scientists were able to recover protein sequences from a dinosaur called the T-rex, which confirmed its avian lineage. This means birds are the extant relatives of (avian) dinosaurs. Moreover, the pattern of fossil distribution gives us an idea of the time in history when various species were formed or become extinct.


Page No. 158

Q.1. Why are human beings who look so different from each other in terms of size, colour and looks said to belong to the same species?
Ans. 
Human beings are said to belong to the same species because of the following reasons:
(i) DNA studies
(ii) Number of the chromosome is the same
(iii) All have a common ancestor
(iv) They interbreed among themselves to produce fertile young ones of their own kind.

Q.2. In evolutionary terms, can we say which among bacteria, spiders, fish and chimpanzees have a ‘better’ body design? Why or why not?
Ans.

  • Evolution cannot always be equated with progress or better body designs. Evolution simply creates more complex body designs. 
  • However, this does not mean that simple body designs are inefficient. In fact, bacteria having a simple body design are still the most cosmopolitan organisms found on earth. 
  • They can survive hot springs, deep sea, and even freezing environment.
  • Therefore, bacteria, spiders, fish, and chimpanzees are all different branches of evolution.

Page No. 159

Exercises

Q.1. A Mendelian experiment consisted of breeding tall pea plants bearing violet flowers with short pea plants bearing white flowers. The progeny all bore violet flowers, but almost half of them were short. This suggests that the genetic make-up of the tall parent can be depicted as
(a) TTWW
 (b) TTww
 (c) TtWW
 (d) TtWw
Ans. 
(c) 

Explanation:

  • The genetic make-up of the tall parent can be depicted as TtWW
  • Since all the progeny bore violet flowers, it means that the tall plant having violet flowers has WW genotype for violet flower colour.
  • Since the progeny is both tall and short, the parent plant was not a pure tall plant. 
  • Its genotype must be Tt.
  • Therefore, the cross involved in the given question is

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

  • Therefore, half the progeny is tall, but all of them have violet flowers.

Q.2. An example of homologous organs is
(a) our arm and a dog’s fore-leg.
(b) our teeth and an elephant’s tusks.
(c) potato and runners of grass.
(d) all of the above.
Ans. 
(d) Homologous organs have the same origin as each of the above organs, but different functions. Homologous organs can be defined as the organs of various animals having similar basic structure but different functions. For example, a whale’s flippers, a frog’s forelimbs, and man have the same basic structures but perform different functions, which is why they are called homologous organs.

Q.3. In evolutionary terms, we have more in common with
(a) a Chinese school-boy.
(b) a chimpanzee.
(c) a spider.
(d) a bacterium.
Ans. 
(a) Humans and chimpanzees are related since they belong to the identical order (Primates) and same family, (Hominidae). However, a school-boy, regardless of the ethnicity is still a Homo sapien


Q.4. A study found that children with light-coloured eyes are likely to have parents with light-coloured eyes. On this basis, can we say anything about whether the light eye colour trait is dominant or recessive? Why or why not?
Ans.

  • Let us assume that children with light-coloured eyes can either have LL or Ll or ll genotype.
  • If the children have LL genotype, then their parents will also be of LL genotype

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

  • If the children with light-coloured eyes have ll genotype, then their parents will also have ll genotype.

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

  • Therefore, it cannot be concluded whether light eye colour is dominant or recessive.

Q.5. How are the areas of study − evolution and classification − interlinked?
Ans.

  • Classification involves grouping of organism into a formal system based on similarities in internal and external structure or evolutionary history.
  • Two species are more closely related if they have more characteristics in common. 
  • And if two species are more closely related, then it means they have a more recent ancestor.
    Example: In a family, a brother and sister are closely related and they have a recent common ancestor i.e., their parents. A brother and his cousin are also related but less than the sister and her brother. This is because the brother and his cousin have a common ancestor i.e., their grandparents in the second generation whereas the parents were from the first generation.
    With subsequent generations, the variations make organisms more different than their ancestors.
  • This discussion clearly proves that we classify organisms according to their resemblance which is similar to creating an evolutionary tree.

Q.6. Explain the terms analogous and homologous organs with examples.
Ans. 

Homologous organs

  • Homologous organs are similar in origin (or are embryologically similar) but perform different functions. 

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

Example: The forelimbs of humans and the wings of birds look different externally but their skeletal structure is similar. It means that their origin is similar (as wings in birds are modifications of forearm) but functions are different - the wings help in flight whereas human forearm helps in various activities.

Analogous Organs

  • Analogous organs, on the other hand, have different origin but perform similar functions.
    NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSCExample: The wings of a bird and a bat are similar in function but this similarity does not mean that these animals are more closely related. If we carefully look at these structures, then we will find that the wings of a bat are just the folds of skin that are stretched between its fingers whereas the wings of birds are present all along the arm. 
  • Therefore, these organs are analogous organs.

Q.7. Outline a project which aims to find the dominant coat colour in dogs.
Ans.

  • A homozygous black (BB) male dog and a homozygous white (bb) female dog are taken and given to mate and produce offspring in F1 generation.
  • In F1 generation all the dogs will be black if black colour is dominant. However, all the dogs will be white if white colour is dominant. If F1 generation dogs are allowed to interbreed, in F2 generation if black colour is dominant, out of every 4 dogs, 3 will be black, and if white colour is dominant, 3 out of 4 dogs will be white.
    Dominant Coat Colour in DogsDominant Coat Colour in Dogs

Q.8. Explain the importance of fossils in deciding evolutionary relationships.
Ans. 

  • Fossils are the remains of the organism that once existed on earth. 
  • They represent the ancestors of the plants and animals that are alive today. 
  • They provide evidence of evolution by revealing the characteristics of the past organisms and the changes that have occurred in these organisms to give rise to the present organisms. 
  • Let us explain the importance of fossils in deciding evolutionary history with the help of the following example.
  • Around 100 million years ago, some invertebrates died and were buried in the soil in that area. 
  • More sediment accumulated on top of it turning it into sedimentary rock.
  • At the same place, millions of years later, some dinosaurs died and their bodies were buried on top of the sedimentary rock. 
  • The mud containing dinosaurs also turned into a rock.
  • Then, millions of years later, some horse-like creatures died in that area and got fossilized in rocks above the dinosaur fossils.
  • Sometime later, due to soil erosion or floods in that area, the rocks containing horse-like fossils are exposed.
  • If that area is excavated deeper, then the dinosaur and invertebrates fossils can also be found. 
  • Thus, by digging that area, scientists can easily predict that horse-like animals evolved later than the dinosaurs and the invertebrates.
  • Thus, the above example suggests that the fossils found closer to the surface of the earth are more recent ones than the fossils present in deeper layers.

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC


Q.9. What evidence do we have for the origin of life from inanimate matter?
Ans. 

  • A British scientist, J.B.S. Haldane, suggested that life originated from simple inorganic molecules. 
  • He believed that when the earth was formed, it was a hot gaseous mass containing elements such as nitrogen, oxygen, carbon, hydrogen, etc. 
  • These elements combined to form molecules like water (H2O), carbon dioxide (CO2), methane (CH4), ammonia (NH3), etc.
  • After the formation of water, slowly the earth surface cooled and the inorganic molecules interacted with one another in water to form simple organic molecules such as sugars, fatty acids, amino acids, etc. 
  • The energy for these reactions was provided by solar radiations, lightning, volcanic eruptions, etc.
  • This was proved by the experiment of Stanley L. Miller and Harold C. Urey in 1953.
  • They took a mixture of water (H2O), methane (CH4), ammonia (NH3), and hydrogen gas (H2) in a chamber and sparks were passed through this mixture using two electrodes. 
  • After one week, 15 % of the carbon from methane was converted into amino acids, sugars, etc. 
  • These organic molecules are polymerized and assembled to form protein molecules that gave rise to life on earth.
    Miller and Urey ExperimentMiller and Urey Experiment

Q.10. Explain how sexual reproduction gives rise to more viable variations than asexual reproduction. How does this affect the evolution of those organisms that reproduce sexually?
Ans.

  • In sexual reproduction, two individuals having different variations combine their DNA to give rise to a new individual. 
  • Therefore, sexual reproduction allows more variations, whereas in asexual reproduction, chance variations can only occur when the copying of DNA is not accurate.
  • Additionally, asexual reproduction allows very less variations because if there are more variations, then the resultant DNA will not be able to survive inside the inherited cellular apparatus.
  • However, in sexual reproduction, more variations are allowed and the resultant DNA is also able to survive, thus making the variations viable.
  • Variation and Evolution: Variants help the species to survive in all the conditions. 
  • Environmental conditions such as heat, light, pests, and food availability can change suddenly at only one place. 
  • At that time, only those variants resistant to these conditions would be able to survive. 
  • This will slowly lead to the evolution of a better adapted species. 
  • Thus, variation helps in the evolution of sexually reproducing organisms.
       

Q.11. How is the equal genetic contribution of male and female parents ensured in the progeny?
Ans.

  • In human beings, every somatic cell of the body contains 23 pairs of chromosomes
  • Out of these 23 pairs, the first 22 pairs are known as autosomes and the remaining one pair is known as sex chromosomes represented as X and Y.
  • Females have two X chromosomes and males have one X and one Y chromosome.
  • The gamete receives half of the chromosomes
  • Therefore, the male gametes have 22 autosomes and either X or Y chromosome.
  • The female gamete, on the other hand, has 22 autosomes and X chromosome.
  • During reproduction, the male and female gametes fuse and thus the progeny receives 22 autosomes and one X or Y chromosome from male parent and 22 autosomes and one X chromosome from the female parent.
    NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC


Q.12. Only variations that confer an advantage to an individual organism will survive in a population. Do you agree with this statement? Why or why not?
Ans. 

  • In species, variations that offer survival advantages are naturally selected. Individuals adjust to their environments with the help of these selected variations and consequently, these variations are passed on to their progeny. 
  • Evolution of organisms occurs as a result of this natural selection.
    However, there can be some other variations, which do not offer any survival advantage and arise only accidentally. 
  • Such variations in small populations can change the frequency of some genes even if they are not important for survival.
  • This accidental change in the frequency of genes in small populations is referred to as genetic drift.
  • Thus, genetic drift provides diversity (variations) without any survival advantage.
The document NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC is a part of the UPSC Course Science & Technology for UPSC CSE.
All you need of UPSC at this link: UPSC
86 videos|349 docs|235 tests
Download as PDF

How to Prepare for UPSC

Read our guide to prepare for UPSC which is created by Toppers & the best Teachers

Download free EduRev App

Track your progress, build streaks, highlight & save important lessons and more!

Related Searches

ppt

,

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

,

mock tests for examination

,

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

,

study material

,

Important questions

,

shortcuts and tricks

,

Viva Questions

,

pdf

,

Exam

,

practice quizzes

,

Summary

,

NCERT Solutions: Heredity & Evolution Notes | Study Science & Technology for UPSC CSE - UPSC

,

past year papers

,

Extra Questions

,

video lectures

,

MCQs

,

Objective type Questions

,

Semester Notes

,

Previous Year Questions with Solutions

,

Free

,

Sample Paper

;