JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  NCERT Solutions: Complex Numbers & Quadratic Equations

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

Exercise 4.1

Que 1: Express the given complex number in the form a + ib : (5i)( -35 i)

Ans:
( -35 i) = -5 x -35 × i × i
= -3i2
= -3 × (-1)    [i2 = -1]
= 3

Que 2: Express the given complex number in the form a + ib: i9+ i19

Ans:
i9 + i19 = i4×2+1 + i4×4+3
= (i4)2 · i + (i4)4 · i3
= 1 × i + 1 × (−i) [i4 = 1, i3 = −i]
= i + (−i)
= 0

Que 3: Express the given complex number in the form a  + ib: i–39

Ans:
i−39 = i−4×9−3 = (i4)−9 · i−3
= (1)−9 · i−3    [i4 = 1]
= 1/i3 = 1/−i    [i3 = −i]
= −1/i × i/i
= −i/i2 = −i/−1   [i2 = −1]
= i

Que 4: Express the given complex number in the form a  + ib: 3(7 +  i7) +  i(7 +  i7)

Ans: 
3(7 + 7i) + i(7 + 7i) = 21 + 21i + 7i + 7i2
= 21 + 28i + 7 × (−1) [∵ i2 = −1]
= 14 + 28i

Que 5: Express the given complex number in the form a +  ib: (1 – i) – (–1 + i6)

Ans:
(1 − i) − (1 + i6) = 1 − i + 1 − 6i
= 2 − 7i

Que 6: Express the given complex number in the form a  + ib: 15 + i 25) − ( 4 + i 52 )

Ans:
15 + i 25) − ( 4 + i 52 )
= 15 − 4 + i 25 − i 52
= ( 15 − 4) + i( 25 − 52)
= −195 + i −2110
= −195 − i 2110

Que 7: Express the given complex number in the form a +  ib:13 + i 73 ] + [ 43 + i 13 ] − ( −43 + i)

Ans:
[ 13 + i 73 ] + [ 43 + i 13 ] − ( −43 + i)
= 13 + i 73 + 43 + i 1343 − i
= ( 13 + 43 + 43) + i( 7313 − 1)
= 173 + i 53

Que 8: Express the given complex number in the form a  + ib:  (1 – i)4

Ans:
(1 − i)4 = [(1 − i)2]2
= [12 + i2 − 2i]2
= [1 − 1 − 2i]2
= (−2i)2
= (−2i) × (−2i)
= 4i2 = −4        [∵ i2 = −1]

Que 9: Express the given complex number in the form a  + ib: ( 13 + 3i)3

Ans:
( 13 + 3i)3 = 133 + (3i)3 + 3 13(3i)( 13 + 3i)
= 127 + 27i3 + 3i( 13 + 3i)
= 127 + 27(−i) + i + 9i2 [i3 = −i, i2 = −1]
127 − 27i + i − 9
= ( 127 − 9) + i(−27 + 1)
= −24227 − 26i

Que 10: Express the given complex number in the form a +  ib: (−2 − 13 i)3

Ans:
(−2 − 13 i)3 = (−1)3(2 + 13 i)3
= −[ 23 + (13 i)3 + 3(2)( 13 i )(2 + 13 i)]
= −[ 8 + i327 + 2i2 + i3)]
= −[ 8 − i27 + 4i + 2i23]      [i3 = −i, i2 = −1]
= −[ 8 − i27 + 4i − 23]
= −[ 223 + i10727)]
= 22310727 i

Que 11: Find the multiplicative inverse of the complex number: 4 – 3i

Ans:
Let z = 4 − 3i
Then, z̅ = 4 + 3i and |z|2 = 42 + (−3)2 = 16 + 9 = 25
Therefore, the multiplicative inverse of 4 − 3i is given by:
z−1 = z̅|z|2 = 4 + 3i25
= 425 + 325 i

Que 12: Find the multiplicative inverse of the complex number :√5 + 3i

Ans:
Let z = √5 + 3i
Then, z̅ = √5 − 3i and |z|2 = (√5)2 + 32 = 5 + 9 = 14
Therefore, the multiplicative inverse of √5 + 3i is given by:
z−1 = z̅|z|2 = √5 − 3i14
= √514314i

Que 13: Find the multiplicative inverse of the complex number: –i

Ans: 
Let z = −i
Then, z̅ = i and |z|2 = |i|2 = 12 = 1
Therefore, the multiplicative inverse of −i is given by:
z−1 = z̅|z|2 = i1 = i

Que 14: Express the following expression in the form of a  + ib.

 (3 + i√5)(3 − i√5)(√3 + i√2) − (√3 − i√2)

Ans:
(3 + i√5)(3 − i√5)(√3 + i√2) − (√3 − i√2)
= (3)2 − (i√5)2√3 + i√2 − √3 + i√2 [(a + b)(a − b) = a2 − b2]
= 9 − 5i22i√2
= 9 − 5(−1)2i√2 [i2 = −1]
= 9 + 52i√2 = 14i2√2i
= 142(−1) = −7√27i2

Miscellaneous Exercise

Que 1: Evaluate: NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

Ans:

 NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

 Que 2: For any two complex numbers z1 and z2, prove that

Re (z1z2) = Re zRe z2 – Im z1 Im z2

Ans:
Let z1 = x1 + iy1 and z2 = x2 + iy2
.∴ z1z2 = (x1 + iy1) (x2 + iy2)
= x1(x2 + iy2) + iy1(x2 + iy2)
= x1x2 + i(x1y2 + x2y1) + i2y1y2
= (x1x2 − y1y2) + i(x1y2 + x2y1)
.∴ Re(z1z2) = x1x2 − y1y2
.∴ Re(z1z2) = Re(z1) Re(z2) − Im(z1) Im(z2)
Hence, proved.

 Que 3: Reduce NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations to the standard form.

Ans:

 NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations [ On Multiplying numerator and denomunator by (14 + 5i)]

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

 Que 4: If x – iy = NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations prove that NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations.

Ans:

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations [ On Multiplying numerator and denomunator by (c + id)]

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

 (x2 + y2)2 = (x2 − y2)2 + 4x2y2
(ac + bd)(c2 + d2) + (ad − bc)(c2 + d2)
a2c2 + b2d2 + 2acbd + a2d2 + b2c2 − 2adbc(c2 + d2)2
a2c2 + b2d2 + a2d2 + b2c2 + 2acbd(c2 + d2)2
a2(c2 + d2) + b2(c2 + d2)(c2 + d2)2
(c2 + d2)(a2 + b2)
(a2 + b2)(c2 + d2)
Hence, proved.

Que 5: If z1 = 2 − i, z2 = 1 + i, find z1 + z2 + 1z1 − z2 + i

Ans:

z1 = 2 − i, z2 = 1 + i
.∴ z1 + z2 + 1z1 − z2 + i = (2 − i) + (1 + i) + 1(2 − i) − (1 + i) + i

= 42(−i) = 2−i × 1 + i1 + i = 2(1 + i)1 − i2   [i2 = −1]

= 2(1 + i)2 = 1 + i

|1 + i| = √(12 + 12) = √2

Thus, the value of z1 + z2 + 1z1 − z2 + i is √2.

 Que 6: If a + ib = (x + i)22x2 + 1, prove that a2 + b2(x2 + 1)2(2x2 + 1)

Ans:

a + ib = (x + i)22x2 + 1

= x2 + i2 + 2xi2x2 + 1

= x2 − 1 + i2x2x2 + 1

= x2 − 12x2 + 1 + i 2x2x2 + 1

On comparing real and imaginary parts, we obtain
a = x2 − 12x2 + 1,   b = 2x2x2 + 1

∴ a2 + b2 = (x2 − 1)2(2x2 + 1)2 + (2x)2(2x2 + 1)2

= x4 − 2x2 + 1 + 4x2(2x2 + 1)2

= x4 + 2x2 + 1(2x2 + 1)2

= (x2 + 1)2(2x2 + 1)2
∴ a2 + b2 = (x2 + 1)2(2x2 + 1)2
Hence, proved.

Que 7: Let z1 = 2 − i, z2 = −2 + i. Find:

(i) Re z1z2z1
(ii) Im 1z1z1

Ans:

z1 = 2 − i, z2 = −2 + i
(i)
z1z2 = (2 − i)(−2 + i) = −4 + 2i + 2i − i2 = −4 + 4i − (−1) = −3 + 4i

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

z1z2z1 = -3 + 4i2 + i

(ii)
On multiplying numerator and denominator by (2 − i), we obtain:

z1z2z1 = (−3 + 4i)(2 − i)(2 + i)(2 − i)
−6 + 3i + 8i − 4i222 + 12
−6 + 11i − 4(-1)22 + 12
−2 + 11i5
= −25 + 11i5
 On comparing real parts, we obtain

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations 

(ii) NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

On comparing imaginary parts, we obtain

 NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

Que 8: Find the real numbers x and y if (x – iy) (3+5i) is the conjugate of –6 – 24i.

Ans:
Let z = (x − iy)(3 + 5i)

z = 3x + 5xi − 3yi − 5yi2 = 3x + 5xi − 3yi + 5y

= (3x + 5y) + i(5x − 3y)

∴ z = (3x + 5y) − i(5x − 3y)

It is given that, NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

∴ (3x + 5y) − i(5x − 3y) = −6 − 24i

Equating real and imaginary parts, we obtain:

3x + 5y = −6   ... (i)
5x − 3y = 24   ... (ii)

Multiplying equation (i) by 3 and equation (ii) by 5, and then adding them, we obtain:

9x + 15y = −18   ... (from i × 3)
25x − 15y = 120   ... (from ii × 5)

Adding: 34x = 102

∴ x = 10234 = 3

Putting the value of x in equation (i), we obtain
3(3) + 5y = -6
⇒ 5y = -6 - 9 = -15
⇒ y =  -3

 Thus, the values of and y are 3 and –3 respectively.

Que 9: Find the modulus of 1 + i1 − i − 1 − i1 + i.

Ans:
1 + i1 − i1 − i1 + i = (1 + i)2 − (1 − i)2(1 − i)(1 + i)
= 1 + i2 + 2i − 1 − i2 − 2i12 + 124i2 = 2i
1 + i1 − i1 − i1 + i = |2i| = √22 = 2

Que 10: If (x + iy)3 = u + iv, then show that uxvy = 4(x2 − y2).

Ans:

(x + iy)3 = u + iv

⇒ x3 + (iy)3 + 3·x·iy(x + iy) = u + iv

⇒ x3 + i y3 + 3x2yi + 3xy2i2 = u + iv

⇒ x3 − 3xy2 + i(3x2y − y3) = u + iv

∴ u = x3 − 3xy2, v = 3x2y − y3

On equating real and imaginary parts, we obtain:

ux + vy = x3 − 3xy2x + 3x2y − y3y

= x(x2 − 3y2)x + y(3x2 − y3)y

= x2 − 3y2 + 3x2 − y2

= 4x2 − 4y2

= 4(x2 − y2)

ux + vy = 4(x2 − y2)

Hence, proved.

Que 11: If α and β are different complex numbers with NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations = 1, then find NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations.

Ans:

Let α = a  + ib and β = x +  iy

It is given that, NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

 NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

  NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations 

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

Que 12: Find the number of non-zero integral solutions of the equation NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations.

Ans:
|1 − i|x = 2x

⇒ √(12 + (−1)2)x = 2x

⇒ (√2)x = 2x

⇒ 2x/2 = 2x

⇒ x 2 = x

⇒ x = 2x

⇒ 2x − x = 0

⇒ x = 0

 Thus, 0 is the only integral solution of the given equation. Therefore, the number of non-zero integral solutions of the given equation is 0.

Que 13: If (a  + ib) (c +  id) (e +  if) (g  + ih) = A + iB, then show that

(a2  + b2) (c2+   d2) (e2 +  f2) (g2 +  h2) = A2  +B2.

 Ans:

(a + ib)(c + id)(e + if)(g + ih) = A + iB

∴ |(a + ib)(c + id)(e + if)(g + ih)| = |A + iB|

⇒ |(a + ib)| × |(c + id)| × |(e + if)| × |(g + ih)| = |A + iB|

⇒ √(a2 + b2) × √(c2 + d2) × √(e2 + f2) × √(g2 + h2) = √(A2 + B2)

On squaring both sides, we obtain:

(a2 + b2)(c2 + d2)(e2 + f2)(g2 + h2) = A2 + B2

Hence, proved.

Que 14: If (1 + i)(1 − i)m = 1, then find the least positive integral value of m.

Ans:

(1 + i)(1 − i)m = 1

(1 + i)(1 − i) × (1 + i)(1 + i)m = 1

(1 + i)2(12 + 12)m = 1

(12 + i2 + 2i)2m = 1

(−1 + 2i)2m = 1

(2i)2m = 1

⇒ im = 1

∴ m = 4k, where k is some integer.

Therefore, the least positive integer is 1.

Thus, the least positive integral value of m is 4 (= 4 × 1).

 Que 15: Convert the following in the polar form (Out of NCERT)

(i) 1 + 7i(2 − i)2,

(ii) 1 + 3i(1 − 2i) 

Ans:

 (i) Here, z = 1 + 7i(2 − i)2

 1 + 7i(2 − i)2 = 1 + 7i4 + i2 − 4i = 1 + 7i4 − 1 − 4i
1 + 7i3 − 4i × 3 + 4i3 + 4i = 3 + 4i + 21i + 28i232 + 42
3 + 4i + 21i − 2832 + 42 = −25 + 25i25
= −1 + i

Let cos θ = –1 and r sin θ = 1

On squaring and adding, we obtain

r2 (cos2 θ + sin2 θ) = 1+ 1

r2 (cos2 θ + sin2 θ) = 2
r2 = 2     [cos2 θ + sin2 θ = 1]
⇒ r = √2   [Conventionally, r > 0]

.∴ √2 cos θ = −1 and √2 sin θ = 1

⇒ cos θ = −1√2, sin θ = 1√2

.∴ θ = π − π4 = 4   [As θ lies in II quadrant]

.∴ z = r cos θ + i r sin θ

= √2 cos 4 + i √2 sin 4
= √2 ( cos 4 + i sin 4 )

 This is the required polar form.

(ii) Here, z =  1 + 3i(1 − 2i)

 = 1 + 3i1 − 2i × 1 + 2i1 + 2i

= 1 + 2i + 3i − 61 + 4

= −5 + 5i5 = −1 + i

Let cos θ = –1 and r sin θ = 1

On squaring and adding, we obtain

r2 (cos2 θ + sin2 θ) = 1+ 1
r2 (cos2 θ  +sin2 θ) = 2

r2 = 2                        [cos2 θ + sin2 θ = 1]

⇒ r = √2   [Conventionally, r > 0]

.∴ √2 cos θ = −1 and √2 sin θ = 1

⇒ cos θ = −1√2, sin θ = 1√2

.∴ θ = π − π4 = 4   [As θ lies in II quadrant]

.∴ z = r cos θ + i r sin θ

= √2 cos 4 + i √2 sin 4
= √2 ( cos 4 + i sin 4 )

This is the required polar form.

Que 16: Solve the equation: 3x2 − 4x + 203 = 0  (Out of NCERT)

Ans:

The given quadratic equation is 3x2 − 4x + 203 = 0

This equation can also be written as 9x2 − 12x + 20 = 0

On comparing this equation with ax2 + bx + c = 0, we obtain:
a = 9, b = −12, and c = 20

Therefore, the discriminant of the given equation is:
D = b2 − 4ac = (−12)2 − 4 × 9 × 20 = 144 − 720 = −576

Therefore, the required solutions are:
x = −b ± √D2a
= −(−12) ± √−576
2 × 9

= 12 ± √576 i18   [√−1 = i]

= 12 ± 24i18
= 6(2 ± 4i)18
= 2 ± 4i3
= 23 ± 4i3

 Que 17: Solve the equation : x2 − 2x + 32 = 0 (Out of NCERT)

Ans:

The given quadratic equation is x2 − 2x + 32 = 0

This equation can also be written as 2x2 − 4x + 3 = 0

On comparing this equation with ax2 + bx + c = 0, we obtain:
a = 2, b = −4, and c = 3

Therefore, the discriminant of the given equation is:
D = b2 − 4ac = (−4)2 − 4 × 2 × 3 = 16 − 24 = −8

Therefore, the required solutions are:
x = −b ± √D2a
= −(−4) ± √−82 × 2
= 4 ± 2√2i4   [√−1 = i]

= 2 ± √2i2
= 1 ± √2i2

Que 18: Solve the equation: 27x2 – 10+ 1 = 0 (Out of NCERT)

Ans:

The given quadratic equation is 27x2 – 10x + 1 = 0

On comparing the given equation with ax2 +  bx +  c = 0, we obtain

a = 27, b = –10, and c = 1

Therefore, the discriminant of the given equation is

D = b2 – 4ac = (–10)2 – 4 × 27 × 1 = 100 – 108 = –8

Therefore, the required solutions are

 x = −b ± √D2a = −(−10) ± √−82 × 27 = 10 ± 2√2i54   [√−1 = i]

= 5 ± √2i27 = 527 ± √2i27

 Que 19: Solve the equation: 21x2 – 28+ 10 = 0 (Out of NCERT)

Ans:

The given quadratic equation is 21x2 – 28x + 10 = 0

On comparing the given equation with ax2 +  bx +  = 0, we obtain

a = 21, b = –28, and c = 10

Therefore, the discriminant of the given equation is

D = b2 – 4ac = (–28)2 – 4 × 21 × 10 = 784 – 840 = –56

Therefore, the required solutions are

 = −b ± √D2a = −(−28) ± √−562 × 21 = 28 ± √56 i42

= 28 ± 2√14 i42 = 2842 ± 2√1442 = 23 ± √1421 i

Que 20: Find the modulus and argument of the complex number 1 + 2i1 − 3i(Out of NCERT)

Ans:

Let z = 1 + 2i1 − 3i, then:

z = (1 + 2i)(1 + 3i)(1 − 3i)(1 + 3i)1 + 3i + 2i + 6i212 + 321 + 5i + 6(−1)1 + 9

−5 + 5i10−5105i10−1212i

Let z = r cosθ + i r sinθ
i.e., r cosθ = −12 and r sinθ = 12

On squaring and adding, we obtain:

r2(cos2θ + sin2θ) = (−1)222(1)222141412

⇒ r212, ⇒ r = 1√2 [Conventionally, r > 0]

∴ 1√2 cosθ = −12, and 1√2 sinθ = 12

⇒ cosθ = −1√2, sinθ = 1√2

⇒ θ = π − π44 [As θ lies in the II quadrant]

 Therefore, the modulus and argument of the given complex number are  1√2 and 4  respectively.

 

 

The document NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations is a part of the JEE Course Mathematics (Maths) for JEE Main & Advanced.
All you need of JEE at this link: JEE
Are you preparing for JEE Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in JEE exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
209 videos|447 docs|187 tests

Up next

FAQs on NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

1. What are complex numbers, and how are they defined?
Ans. Complex numbers are numbers that can be expressed in the form \( a + bi \), where \( a \) and \( b \) are real numbers, and \( i \) is the imaginary unit defined by \( i^2 = -1 \). Here, \( a \) is known as the real part, and \( b \) is known as the imaginary part of the complex number.
2. How do you perform addition and subtraction of complex numbers?
Ans. To add or subtract complex numbers, you combine their real parts and their imaginary parts separately. For example, if you have two complex numbers \( z_1 = a + bi \) and \( z_2 = c + di \), then their sum is given by \( z_1 + z_2 = (a + c) + (b + d)i \) and their difference is \( z_1 - z_2 = (a - c) + (b - d)i \).
3. What is the geometric representation of complex numbers?
Ans. Complex numbers can be represented geometrically on the complex plane, where the x-axis represents the real part and the y-axis represents the imaginary part. Each complex number corresponds to a point in this plane, allowing for a visual interpretation of operations like addition, subtraction, and multiplication.
4. How do you multiply and divide complex numbers?
Ans. To multiply two complex numbers \( z_1 = a + bi \) and \( z_2 = c + di \), you use the distributive property: \( z_1 z_2 = (ac - bd) + (ad + bc)i \). For division, you multiply the numerator and denominator by the conjugate of the denominator. For example, to divide \( z_1 \) by \( z_2 \), calculate \( \frac{z_1}{z_2} = \frac{(a + bi)(c - di)}{c^2 + d^2} \).
5. What is the conjugate of a complex number and how is it used?
Ans. The conjugate of a complex number \( z = a + bi \) is denoted as \( \overline{z} = a - bi \). The conjugate is used in various operations, such as rationalizing denominators during division of complex numbers. It also has the property that \( z \overline{z} = a^2 + b^2 \), which is a real number representing the square of the modulus of \( z \).
209 videos|447 docs|187 tests
Download as PDF

Up next

Explore Courses for JEE exam
Related Searches

MCQs

,

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

,

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

,

Semester Notes

,

Summary

,

practice quizzes

,

pdf

,

Previous Year Questions with Solutions

,

study material

,

Viva Questions

,

NCERT Solutions Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

,

video lectures

,

Extra Questions

,

past year papers

,

Important questions

,

shortcuts and tricks

,

Exam

,

Sample Paper

,

Free

,

Objective type Questions

,

ppt

,

mock tests for examination

;