NEET Exam  >  NEET Notes  >  Chemistry Class 11  >  NCERT Solutions: The p-Block Elements

NCERT Solutions Class 11 Chemistry - The p-Block Elements

NCERT QUESTIONS: The p - Block Elements

Q 11.1. Discuss the pattern of variation in the oxidation states of

(i) B to Tl and                                   (ii) C to Pb.

Ans: (i) B to Tl

The electric configuration of group 13 elements is ns2 np1. Therefore, the most common oxidation state exhibited by them should be +3. However, it is only boron and aluminium which practically show the +3 oxidation state.

The remaining elements, i.e., Ga, In, Tl, show both the +1 and +3 oxidation states. On moving down the group, the +1 state becomes more stable. For example, Tl ( +1) is more stable than Tl ( +3). This is because of the inert pair effect.

Group 13 element

Oxidation state

B

+3

Al

+3

Ga, In, Tl

+1, +3

The two electrons present in the s-shell are strongly attracted by the nucleus and do not participate in bonding. This inert pair effect becomes more and more prominent on moving down the group. Hence, Ga ( +1) is unstable, In ( +1) is fairly stable, and Tl ( +1) is very stable.

The stability of the 3 oxidation state decreases on moving down the group.

(ii) C to Pb

The electronic configuration of group 14 elements is ns2 np2. Therefore, the most common oxidation state exhibited by them should be 4. However, the 2 oxidation state becomes more and more common on moving down the group. C and Si mostly show the 4 state. 

Group 14 element

Oxidation state

C

+4

Si

+4

Ge, Sn, Pb

+2, +4


On moving down the group, the higher oxidation state becomes less stable. This is because of the inert pair effect. Thus, although Ge, Sn, and Pb show both the 2 and 4 states, the stability of the lower oxidation state increases and that of the higher oxidation state decreases on moving down the group.

NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.2. How can you explain higher stability of BCl3 as compared to TlCl3?

Ans: 

  • Boron and thallium belong to group 13 of the periodic table.
  • In this group, the +1 oxidation state becomes more stable on moving down the group.
  • BCl3 is more stable than TlCl3 because the +3 oxidation state of B is more stable than the +3 oxidation state of Tl.
  • In Tl, the +3 state is highly oxidising and it reverts back to the more stable +1 state.

Q 11.3. Why does boron trifluoride behave as a Lewis acid?

Ans: 

  • The electric configuration of boron is ns2 np1.
  • Boron has three electrons in its valence shell.
  • It can form only three covalent bonds.
  • This means that there are only six electrons around boron.
  • Boron's octet remains incomplete.
  • When one atom of boron combines with three fluorine atoms, its octet remains incomplete.
  • Hence, boron trifluoride remains electron-deficient.
  • Boron trifluoride acts as a Lewis acid.

NCERT Solutions Class 11 Chemistry - The p-Block Elements 

Q 11.4. Consider the compounds, BCl3 and CCl4. How will they behave with water? Justify.

Ans: Being a Lewis acid, BCl3 readily undergoes hydrolysis. Boric acid is formed as a result.

NCERT Solutions Class 11 Chemistry - The p-Block Elements

CCl4 completely resists hydrolysis. Carbon does not have any vacant orbital. Hence, it cannot accept electrons from water to form an intermediate. When CCl4 and water are mixed, they form separate layers.

NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.5. Is boric acid a protic acid? Explain. 

Ans: Boric acid is not a protic acid. It is a weak monobasic acid, behaving as a Lewis acid.

NCERT Solutions Class 11 Chemistry - The p-Block Elements

It behaves as an acid by accepting a pair of electrons from OH ion.

Ques 11.6: Explain what happens when boric acid is heated.

Ans: On heating orthoboric acid (H3BO3) at 370 K or above, it changes to metaboric acid (HBO2). On further heating, this yields boric oxide B2O3.NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.7. Describe the shapes of BF3 and BH4. Assign the hybridisation of boron in these species.

Ans: (i) BF3

As a result of its small size and high electronegativity, boron tends to form monomeric covalent halides. These halides have a planar triangular geometry. This triangular shape is formed by the overlap of three sp2 hybridised orbitals of boron with the sp orbitals of three halogen atoms. Boron is sp2 hybridised in BF3.

NCERT Solutions Class 11 Chemistry - The p-Block Elements

(ii) BH4

Boron-hydride ion (BH4) is formed by the sp3 hybridisation of boron orbitals. Therefore, it is tetrahedral in structure.NCERT Solutions Class 11 Chemistry - The p-Block ElementsQ 11.8. Write reactions to justify amphoteric nature of aluminium. 

Ans: A substance is called amphoteric if it displays characteristics of both acids and bases. Aluminium dissolves in both acids and bases, showing amphoteric behaviour.

(i) NCERT Solutions Class 11 Chemistry - The p-Block Elements

(ii) NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.9. What are electron deficient compounds? Are BCl3 and SiCl4 electron deficient species? Explain.

Ans: In an electron-deficient compound, the octet of electrons is not complete, i.e., the central metal atom has an incomplete octet. Therefore, it needs electrons to complete its octet.

(i) BCl3
BCl3 is an appropriate example of an electron-deficient compound. B has 3 valence electrons. After forming three covalent bonds with chlorine, the number of electrons around it increases to 6. However, it is still short of two electrons to complete its octet.NCERT Solutions Class 11 Chemistry - The p-Block Elements

(ii) SiCl4
The electronic configuration of silicon is ns2 np2. This indicates that it has four valence electrons. After it forms four covalent bonds with four chlorine atoms, its electron count increases to eight. Thus, SiCl4 is not an electron-deficient compound.NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.10. Write the resonance structures of NCERT Solutions Class 11 Chemistry - The p-Block Elements and NCERT Solutions Class 11 Chemistry - The p-Block Elements.

Ans: (a)NCERT Solutions Class 11 Chemistry - The p-Block Elements

NCERT Solutions Class 11 Chemistry - The p-Block Elements

(b) NCERT Solutions Class 11 Chemistry - The p-Block Elements

NCERT Solutions Class 11 Chemistry - The p-Block Elements

There are only two resonating structures for the bicarbonate ion.

Q 11.11. What is the state of hybridisation of carbon in (a) CO₃²⁻  (b) diamond (c) graphite?

Ans: The state of hybridisation of carbon in:

(a)  CO₃²⁻

C in CO₃²⁻ is sp2 hybridised and is bonded to three oxygen atoms.

(b) Diamond

Each carbon in diamond is sp3 hybridised and is bound to four other carbon atoms.

(c) Graphite

Each carbon atom in graphite is sp2 hybridised and is bound to three other carbon atoms.

Q 11.12. Explain the difference in properties of diamond and graphite on the basis of their structures.

Ans: 
 

Diamond

Graphite

It has a crystalline lattice.

It has a layered structure.

In diamond, each carbon atom is sphybridised and is bonded to four other carbon atoms through a σ bond.

In graphite, each carbon atom is sp2 hybridised and is bonded to three other carbon atoms through a σ bond. The fourth electron forms a π bond.

It is made up of tetrahedral units.

It has a planar geometry.

The C–C bond length in diamond is 154 pm.

The C–C bond length in graphite is 141.5 pm.

It has a rigid covalent bond network which is difficult to break.

It is quite soft and its layers can be separated easily.

It acts as an electrical insulator.

It is a good conductor of electricity.

 

Q 11.13. Rationalise the given statements and give chemical reactions:

• Lead(II) chloride reacts with Cl2 to give PbCl4.

• Lead(IV) chloride is highly unstable towards heat.

• Lead is known not to form an iodide, PbI4.

Ans: (a)

  • Lead belongs to group 14 of the periodic table.
  • The two oxidation states displayed by this group are 2 and 4.
  • On moving down the group, the 2 oxidation state becomes more stable.
  • The 4 oxidation state becomes less stable due to the inert pair effect.
  • Hence, PbCl4 is much less stable than PbCl2.
  • However, the formation of PbCl4 takes place when chlorine gas is bubbled through a saturated solution of PbCl2.
NCERT Solutions Class 11 Chemistry - The p-Block Elements(b) On moving down group IV, the higher oxidation state becomes unstable because of the inert pair effect. Pb(IV) is highly unstable and when heated, it reduces to Pb(II)NCERT Solutions Class 11 Chemistry - The p-Block Elements

(c) Lead is known not to form PbI4. Pb ( +4) is oxidising in nature and I- is reducing in nature. A combination of Pb(IV) and iodide ion is not stable. Iodide ion is strongly reducing in nature. Pb(IV) oxidises I to I2 and itself gets reduced to Pb(II).NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.14. Suggest reasons why the B–F bond lengths in BF3 (130 pm) and BF4 (143 pm) differ.

Ans: The B–F bond length in BF3 is shorter than the B–F bond length in NCERT Solutions Class 11 Chemistry - The p-Block Elements . BF3 is an electron-deficient species. With a vacant p-orbital on boron, the fluorine and boron atoms undergo pπ–pπ back-bonding to remove this deficiency. This imparts a double-bond character to the B–F bond.NCERT Solutions Class 11 Chemistry - The p-Block Elements

This double-bond character causes the bond length to shorten in BF3 (130 pm). However, when BF3 coordinates with the fluoride ion, a change in hybridisation from sp2 (in BF3) to sp3 (in NCERT Solutions Class 11 Chemistry - The p-Block Elements ) occurs. Boron now forms 4σ bonds and the double-bond character is lost. This accounts for a B–F bond length of 143 pm in NCERT Solutions Class 11 Chemistry - The p-Block Elements ion.NCERT Solutions Class 11 Chemistry - The p-Block Elements

 Q 11.15. If B–Cl bond has a dipole moment, explain why BCl3 molecule has zero dipole moment.

Ans: 

  • Electronegativity difference between B and Cl results in a polar B–Cl bond.
  • The BCl3 molecule is non-polar.
  • BCl3 has a trigonal planar shape.
  • It is a symmetrical molecule.
  • The dipole moments of the B–Cl bonds cancel each other out.
  • This cancellation leads to a zero-dipole moment.NCERT Solutions Class 11 Chemistry - The p-Block Elements

 Q 11.16. Aluminium trifluoride is insoluble in anhydrous HF but dissolves on addition of NaF. Aluminium trifluoride precipitates out of the resulting solution when gaseous BF3 is bubbled through. Give reasons.

Ans:  

  • Hydrogen fluoride (HF) is a covalent compound.
  • It has a very strong intermolecular hydrogen-bonding.
  • HF does not provide ions.
  • Aluminium fluoride (AlF) does not dissolve in HF.
  • Sodium fluoride (NaF) is an ionic compound.
  • When NaF is added to the mixture, AlF dissolves.
  • This is due to the availability of free F–.
  • The reaction involved in the process is:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

  • Boron trifluoride (BF3) is added to the solution.
  • Aluminium fluoride precipitates out of the solution.
  • The tendency of boron to form complexes is much more than that of aluminium.
  • When BF3 is added to the solution, B replaces Al from the complexes.
  • This replacement occurs according to the following reaction:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.17. Suggest a reason as to why CO is poisonous. 

Ans: Carbon monoxide is highly-poisonous because of its ability to form a complex with haemoglobin. The CO–Hb complex is more stable than the O2–Hb complex. The former prevents Hb from binding with oxygen. Thus, a person dies because of suffocation on not receiving oxygen. It is found that the CO–Hb complex is about 300 times more stable than the O2–Hb complex.

Q 11.18. How is excessive content of CO2 responsible for global warming? 

Ans: 

  • Carbon dioxide is a very essential gas for our survival.
  • However, an increased content of CO2 in the atmosphere poses a serious threat.
  • An increment in the combustion of fossil fuels has led to greater levels of carbon dioxide.
  • The decomposition of limestone contributes to the increase in CO2 levels.
  • A decrease in the number of trees has also resulted in higher carbon dioxide levels.
  • Carbon dioxide has the property of trapping the heat provided by sunrays.
  • Higher the level of carbon dioxide, higher is the amount of heat trapped.
  • This results in an increase in the atmospheric temperature.
  • Consequently, this causes global warming.

Q 11.19. Explain structures of diborane and boric acid. 

Ans: (a) Diborane

  • B2H6 is an electron-deficient compound.
  • B2H6 has only 12 electrons – 6 e– from 6 H atoms and 3 e– each from 2 B atoms.
  • Thus, after combining with 3 H atoms, none of the boron atoms has any electrons left.
  • X-ray diffraction studies have shown the structure of diborane as:NCERT Solutions Class 11 Chemistry - The p-Block Elements
  • 2 boron and 4 terminal hydrogen atoms (Ht) lie in one plane, 
  • while the other two bridging hydrogen atoms (Hb) lie in a plane perpendicular to the plane of boron atoms.
  • Of the two bridging hydrogen atoms, one H atom lies above the plane and the other lies below the plane.
  • The terminal bonds are regular two-centre two-electron (2c – 2e–) bonds,
  •  while the two bridging (B–H–B) bonds are three-centre two-electron (3c – 2e–) bonds. 

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(b) Boric acid

Boric acid has a layered structure. Each planar BO3 unit is linked to one another through H atoms. The H atoms form a covalent bond with a BO3 unit, while a hydrogen bond is formed with another BO3 unit. In the given figure, the dotted lines represent hydrogen bonds.NCERT Solutions Class 11 Chemistry - The p-Block Elements

 Q 11.20. What happens when

(a) Borax is heated strongly
(b) Boric acid is added to water

(c) Aluminium is treated with dilute NaOH,
(d) BF3 is reacted with ammonia?

Ans: (a) When heated, borax undergoes various transitions. It first loses water molecules and swells. Then, it turns into a transparent liquid, solidifying to form a glass-like material called borax bead.NCERT Solutions Class 11 Chemistry - The p-Block Elements

(b) When boric acid is added to water, it accepts electrons from OH ion.NCERT Solutions Class 11 Chemistry - The p-Block Elements(c) Al reacts with dilute NaOH to form sodium tetrahydroxoaluminate(III). Hydrogen gas is liberated in the process.

NCERT Solutions Class 11 Chemistry - The p-Block Elements

(d) BF3 (a Lewis acid) reacts with NH3 (a Lewis base) to form an adduct. This results in a complete octet around B in BF3.NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.21. Explain the following reactions

(a) Silicon is heated with methyl chloride at high temperature in the presence of copper;

(b) Silicon dioxide is treated with hydrogen fluoride;

(c) CO is heated with ZnO;

(d) Hydrated alumina is treated with aqueous NaOH solution.

Ans: (a) When silicon reacts with methyl chloride in the presence of copper (catalyst) and at a temperature of about 537 K, a class of organosilicone polymers called methyl-substituted chlorosilanes (MeSiCl3, Me2SiCl2, Me3SiCl, and Me4Si) are formed.

  NCERT Solutions Class 11 Chemistry - The p-Block Elements

(b) When silicon dioxide (SiO2) is heated with hydrogen fluoride (HF), it forms silicon tetrafluoride (SiF4). Usually, the Si–O bond is a strong bond and it resists any attack by halogens and most acids, even at a high temperature. However, it is attacked by HF.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

The SiF4 formed in this reaction can further react with HF to form hydrofluorosilicic acid.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(c) When CO reacts with ZnO, it reduces ZnO to Zn. CO acts as a reducing agent.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(d) When hydrated alumina is added to sodium hydroxide, the former dissolves in the latter because of the formation of sodium meta-aluminate.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.22. Give reasons:

(i) Conc. HNO3 can be transported in aluminium container.

(ii) A mixture of dilute NaOH and aluminium pieces is used to open drain.

(iii) Graphite is used as lubricant.

(iv) Diamond is used as an abrasive.

(v) Aluminium alloys are used to make aircraft body.

(vi) Aluminium utensils should not be kept in water overnight.

(vii) Aluminium wire is used to make transmission cables.

Ans: (i) Concentrated HNO3 can be stored and transported in aluminium containers as it reacts with aluminium to form a thin protective oxide layer on the aluminium surface. This oxide layer renders aluminium passive.

(ii) Sodium hydroxide and aluminium react to form sodium tetrahydroxoaluminate(III) and hydrogen gas. The pressure of the produced hydrogen gas is used to open blocked drains.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(iii) Graphite has a layered structure and different layers of graphite are bonded to each other by weak Van der Waals’ forces. These layers can slide over each other. Graphite is soft and slippery. Therefore, graphite can be used as a lubricant.

(iv) In diamond, carbon is sp3 hybridised. Each carbon atom is bonded to four other carbon atoms with the help of strong covalent bonds. These covalent bonds are present throughout the surface, giving it a very rigid 3-D structure. It is very difficult to break this extended covalent bonding and for this reason, diamond is the hardest substance known. Thus, it is used as an abrasive and for cutting tools.

(v) Aluminium has a high tensile strength and is very light in weight. It can also be alloyed with various metals such as Cu, Mn, Mg, Si, and Zn. It is very malleable and ductile. Therefore, it is used in making aircraft bodies.

(vi) The oxygen present in water reacts with aluminium to form a thin layer of aluminium oxide. This layer prevents aluminium from further reaction. However, when water is kept in an aluminium vessel for long periods of time, some amount of aluminium oxide may dissolve in water. As aluminium ions are harmful, water should not be stored in aluminium vessels overnight.

(vii) Silver, copper, and aluminium are among the best conductors of electricity. Silver is an expensive metal and silver wires are very expensive. Copper is quite expensive and is also very heavy. Aluminium is a very ductile metal. Thus, aluminium is used in making wires for electrical conduction.

Q 11.23. Explain why is there a phenomenal decrease in ionisation enthalpy from carbon to silicon? 

Ans: Ionisation enthalpy of carbon (the first element of group 14) is very high (1086 kJ/mol). This is expected owing to its small size. However, on moving down the group to silicon, there is a sharp decrease in the enthalpy (786 kJ). This is because of an appreciable increase in the atomic sizes of elements on moving down the group.

Q 11.24. How would you explain the lower atomic radius of Ga as compared to Al? 

Ans:

Atomic radius (in pm)

Aluminum

143

Gallium

135

  • Ga has one shell more than Al.
  • The size of Ga is lesser than Al.
  • This is due to the poor shielding effect of the 3d-electrons.
  • The shielding effect of d-electrons is very poor.
  • The effective nuclear charge experienced by the valence electrons in gallium is much more than in the case of Al.

Q 11.25. What are allotropes? Sketch the structure of two allotropes of carbon namely diamond and graphite. What is the impact of structure on physical properties of two allotropes?

Ans: Allotropy is the existence of an element in more than one form, having the same chemical properties but different physical properties. The various forms of an element are called allotropes.NCERT Solutions Class 11 Chemistry - The p-Block Elements

Diamond:NCERT Solutions Class 11 Chemistry - The p-Block Elements

The rigid 3-D structure of diamond makes it a very hard substance. In fact, diamond is one of the hardest naturally-occurring substances. It is used as an abrasive and for cutting tools.

Graphite:NCERT Solutions Class 11 Chemistry - The p-Block Elements

It has sp2 hybridised carbon, arranged in the form of layers. These layers are held together by weak Van der Waals’ forces. These layers can slide over each other, making graphite soft and slippery. Therefore, it is used as a lubricant.

Q 11.26. (a) Classify following oxides as neutral, acidic, basic or amphoteric:

CO, B2O3, SiO2, CO2, Al2O3, PbO2, Tl2O3

(b) Write suitable chemical equations to show their nature.

Ans: (1) CO = Neutral

(2) B2O3 = Acidic

Being acidic, it reacts with bases to form salts. It reacts with NaOH to form sodium metaborate.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(3) SiO2 = Acidic

Being acidic, it reacts with bases to form salts. It reacts with NaOH to form sodium silicate.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(4) CO2 = Acidic

Being acidic, it reacts with bases to form salts. It reacts with NaOH to form sodium carbonate.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(5) Al2O3 = Amphoteric

Amphoteric substances react with both acids and bases. Al2O3 reacts with both NaOH and H2SO4.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(6) PbO2 = Amphoteric

Amphoteric substances react with both acids and bases. PbO2 reacts with both NaOH and H2SO4.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(7) Tl2O3 = Basic

Being basic, it reacts with acids to form salts. It reacts with HCl to form thallium chloride.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.27. In some of the reactions thallium resembles aluminium, whereas in others it resembles with group I metals. Support this statement by giving some evidences.

Ans:

  • Thallium belongs to group 13 of the periodic table.
  • The most common oxidation state for this group is 3.
  • Heavier members of this group also display the 1 oxidation state.
  • This happens because of the inert pair effect.
  • Aluminium displays the 3 oxidation state.
  • Alkali metals display the 1 oxidation state.
  • Thallium displays both the oxidation states.
  • Therefore, it resembles both aluminium and alkali metals.
  • Thallium, like aluminium, forms compounds such as TlCl3 and Tl2O3.
  • It resembles alkali metals in compounds Tl2O and TlCl.

.Q 11.28. When metal X is treated with sodium hydroxide, a white precipitate (A) is obtained, which is soluble in excess of NaOH to give soluble complex (B). Compound (A) is soluble in dilute HCl to form compound (C). The compound (A) when heated strongly gives (D), which is used to extract metal. Identify (X), (A), (B), (C) and (D). Write suitable equations to support their identities.

Ans: The given metal X gives a white precipitate with sodium hydroxide and the precipitate dissolves in excess of sodium hydroxide. Hence, X must be aluminium.

The white precipitate (compound A) obtained is aluminium hydroxide. The compound B formed when an excess of the base is added is sodium tetrahydroxoaluminate(III).

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Now, when dilute hydrochloric acid is added to aluminium hydroxide, aluminium chloride (compound C) is obtained.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Also, when compound A is heated strongly, it gives compound D. This compound is used to extract metal X. Aluminium metal is extracted from alumina. Hence, compound D must be alumina.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.29. What do you understand by (a) inert pair effect (b) allotropy and (c) catenation? 

Ans: (a) Inert pair effect

As one moves down the group, the tendency of s-block electrons to participate in chemical bonding decreases. This effect is known as inert pair effect. In case of group 13 elements, the electronic configuration is ns2 np1 and their group valency is +3. However, on moving down the group, the +1 oxidation state becomes more stable. This happens because of the poor shielding of the ns2 electrons by the d- and f- electrons. As a result of the poor shielding, the ns2 electrons are held tightly by the nucleus and so, they cannot participate in chemical bonding.

(b) Allotropy

Allotropy is the existence of an element in more than one form, having the same chemical properties but different physical properties. The various forms of an element are called allotropes. For example, carbon exists in three allotropic forms: diamond, graphite, and fullerenes.

(c) Catenation

The atoms of some elements (such as carbon) can link with one another through strong covalent bonds to form long chains or branches. This property is known as catenation. It is most common in carbon and quite significant in Si and S.

Q 11.30. A certain salt X, gives the following results.

(i) Its aqueous solution is alkaline to litmus.

(ii) It swells up to a glassy material Y on strong heating.

(iii) When conc. H2SO4 is added to a hot solution of X, white crystal of an acid Z separates out.

Write equations for all the above reactions and identify X, Y and Z.

Ans: The given salt is alkaline to litmus. Therefore, X is a salt of a strong base and a weak acid. Also, when X is strongly heated, it swells to form substance Y. Therefore, X must be borax.

When borax is heated, it loses water and swells to form sodium metaborate. When heating is continued, it solidifies to form a glassy material Y. Hence, Y must be a mixture of sodium metaborate and boric anhydride.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

When concentrated acid is added to borax, white crystals of orthoboric acid (Z) are formed.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.31. Write balanced equations for:

(i) BF3 LiH →  
(ii) B2H6  H2O →
(iii) NaH B2H6 → 
(iv) H3BO3
(v) Al NaOH →
(vi) B2H6  NH3

Ans:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements 

(iv)   

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.32. Give one method for industrial preparation and one for laboratory preparation of CO and CO2 each.

Ans: Carbon dioxide

In the laboratory, CO2 can be prepared by the action of dilute hydrochloric acid on calcium carbonate. The reaction involved is as follows:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

CO2 is commercially prepared by heating limestone. The reaction involved is as follows:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Carbon monoxide

In the laboratory, CO is prepared by the dehydration of formic acid with conc. H2SO4, at 373 K. The reaction involved is as follows:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

CO is commercially prepared by passing steam over hot coke. The reaction involved is as follows:

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.33. An aqueous solution of borax is

(a) neutral                                                      (b) amphoteric

(c) basic                                                         (d) acidic

Ans: (c) Borax is a salt of a strong base (NaOH) and a weak acid (H3BO3). It is, therefore, basic in nature.

Q 11.34.  Boric acid is polymeric due to

(a) its acidic nature                                      (b) the presence of hydrogen bonds

(c) its monobasic nature                             (d) its geometry

Ans: (b) Boric acid is polymeric because of the presence of hydrogen bonds. In the given figure, the dotted lines represent hydrogen bonds.

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

Q 11.35. The type of hybridisation of boron in diborane is

(a) sp
(b) sp
(c) sp3  
(d) dsp2

Ans: (c) Boron in diborane is sp3 hybridised.

Q 11.36. Thermodynamically the most stable form of carbon is

(a) diamond 
 (b) graphite
 (c) fullerenes 
 (d) coal

Ans: (b) Graphite is thermodynamically the most stable form of carbon.

Q 11.37. Elements of group 14

(a) exhibit oxidation state of +4 only                   

(b) exhibit oxidation state of +2 and +4

(c) form M2– and M4 +   ion                                          

(d) form M2+  and M4+  ions

Ans: (b)The elements of group 14 have 4 valence electrons. Therefore, the oxidation state of the group is +4. However, as a result of the inert pair effect, the lower oxidation state becomes more and more stable and the higher oxidation state becomes less stable. Therefore, this group exhibits +4 and +2 oxidation states.

Group 14 element

Oxidation state

C

+4

Si

+4

Ge, Sn, Pb

+2, +4

 

Q 11.38. If the starting material for the manufacture of silicones is RSiCl3, write the structure of the product formed.

Ans: 

NCERT Solutions Class 11 Chemistry - The p-Block Elements

(i)

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

(ii)

 NCERT Solutions Class 11 Chemistry - The p-Block Elements

The document NCERT Solutions Class 11 Chemistry - The p-Block Elements is a part of the NEET Course Chemistry Class 11.
All you need of NEET at this link: NEET
172 videos|306 docs|152 tests

Top Courses for NEET

FAQs on NCERT Solutions Class 11 Chemistry - The p-Block Elements

1. What are p-Block elements?
Ans. P-Block elements are the elements present in the p-block of the periodic table. These elements have valence electrons in the p orbital of their outermost shell. The p-block elements include six groups namely group 13 to group 18.
2. What is the electronic configuration of p-Block elements?
Ans. The electronic configuration of p-block elements is ns2np1-6, where n is the principal quantum number. In this configuration, the valence electrons are present in the p orbital of the outermost shell.
3. What are the properties of p-Block elements?
Ans. Properties of p-Block elements include: 1. They are non-metals, metalloids, and metals. 2. They form covalent bonds. 3. They have a variable oxidation state. 4. They show allotropy. 5. They are electronegative in nature.
4. Why are p-Block elements important?
Ans. P-Block elements are important because: 1. They are essential for life processes. 2. They have a wide range of applications in various industries. 3. They are used as catalysts in various chemical reactions. 4. They are used in the production of semiconductors and electronic devices. 5. They play an important role in environmental chemistry.
5. What are the uses of p-Block elements?
Ans. The uses of p-Block elements include: 1. Boron is used in the production of borosilicate glass, which is heat resistant. 2. Carbon is used in the production of steel and graphite. 3. Nitrogen is used in fertilizers and as a refrigerant. 4. Oxygen is used in combustion reactions and in the production of steel. 5. Silicon is used in the production of semiconductors and electronic devices.
172 videos|306 docs|152 tests
Download as PDF
Explore Courses for NEET exam

Top Courses for NEET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Summary

,

Viva Questions

,

Extra Questions

,

Important questions

,

study material

,

MCQs

,

Previous Year Questions with Solutions

,

shortcuts and tricks

,

Objective type Questions

,

Semester Notes

,

ppt

,

practice quizzes

,

past year papers

,

pdf

,

NCERT Solutions Class 11 Chemistry - The p-Block Elements

,

NCERT Solutions Class 11 Chemistry - The p-Block Elements

,

Sample Paper

,

Exam

,

Free

,

mock tests for examination

,

video lectures

,

NCERT Solutions Class 11 Chemistry - The p-Block Elements

;