अभ्यास
प्रश्न.1. इनमें अन्तर करिए
(अ) साँस (श्वसन) और दहन
(ब) ग्लाइकोलिसिस तथा क्रेब्स चक्र
(स) ऑक्सी श्वसन तथा किण्वन
अनॉक्सीकरण
(1) यह क्रिया ऑक्सीजन की अनुपस्थिति में जीवित माध्यम में होती है।
(2) यह क्रिया कोशिका के अंदर होती है।
(3) अनॉक्सी श्वसन माइमेन कंपलैक्स विकर की सहायता से होता है जो उच्च पौधों की कोशिकाओं में पाया जाता है।
(4) इसमें ऑक्सीकरण की क्रिया पूर्ण रूप से संपन्न नहीं होती इस कारण इसमें एक माध्यमिक यौगिक एथिल एल्कोहल बनता है तथा अल्प मात्रा में ऊर्जा बनती है।किण्वन
(1) यह क्रिया भी ऑक्सीजन की अनुपस्थिति में लेकिन निर्जीव माध्यम में होती है।
(2) यह क्रिया कोशिका के बाहर होती है।
(3) किण्वन की क्रिया भी जाइमेज कंपलैक्स विकर की सहायता से होती है जो सूक्ष्म जीव (यीस्ट) की कोशिकाओं में पाया जाता है।
(4) इसमें भी ऑक्सीकरण की क्रिया पर्ण रूप से संपन्न नहीं होती है इस कारण इसमें भी माध्यमिक यौगिक (एथिल एल्कोहल) तथा अन्य रसायन बनते हैं तथा कम मात्रा में ऊर्जा उत्पन्न होती है।
प्रश्न.2. श्वसनीय क्रियाधार क्या है? सर्वाधिक साधारण क्रियाधार का नाम बताइए।
वे कार्बनिक पदार्थ जो एनाबोलिक विधि से संश्लेषित हों अथवा संचित भोजन के रूप में संग्रह किए जाएँ और ऊर्जा के विमोचन के लिए उनका विघटन हो उन्हें श्वसनीय क्रियाधार कहते हैं। सर्वाधिक साधारण क्रियाधार है ग्लूकोज (मोनोसैकेराइड कार्बोहाइड्रेट)।
प्रश्न.3. ग्लाइकोलिसिस को रेखा द्वारा बनाइए।
ग्लाइकोलिसिस ग्लाइकोलिसिस को EMP मार्ग (Embden Meyerhoff Parnas Pathway) भी कहते हैं। यह कोशिकाद्रव्य में सम्पन्न होता है। इसमें ऑक्सीजन का प्रयोग नहीं होता; अतः ऑक्सी तथा अनॉक्सीश्वसन दोनों में यह क्रिया होती है। इस क्रिया के अन्त में ग्लूकोस के एक (UPBoardSolutions.com) अणु से पाइरुविक अम्ल (pyruvic acid) के 2 अणु बनते हैं। ग्लाइकोलिसिस में 4 ATP बनते हैं, 2 ATP खर्च होते हैं; अत: 2 ATP अणु का लाभ होता है। इन अभिक्रियाओं में मुक्त 2H+ आयन्स हाइड्रोजनग्राही NAD से अनुबन्धित होकर NAD.2H बनाते हैं। ये क्रियाएँ विभिन्न चरणों में पूर्ण होती हैं। ग्लाइकोलिसिस से कुल 8 ATP अणु ऊर्जा प्राप्त होती है।
प्रश्न.4. ऑक्सीश्वसन के मुख्य चरण कौन-कौन से हैं ? यह कहाँ सम्पन्न होती है?
ऑक्सीश्वसन के मुख्य चरण
जीवित कोशिका में ऑक्सीजन की उपस्थिति में ग्लूकोस (कार्बनिक पदार्थ) के जैव-रासायनिक ऑक्सीकरण को ऑक्सीश्वसन कहते हैं। इस क्रिया के अन्तर्गत रासायनिक ऊर्जा गतिज ऊर्जा के रूप में ATP में संचित हो जाती है।
ऑक्सीश्वसन निम्नलिखित चरणों में पूर्ण होता है
(क) ग्लाइकोलिसिस अथवा ई० एम० पी० मार्ग (Glycolysis or E.M.P. Pathway) : यह क्रिया कोशिकाद्रव्य में सम्पन्न होती है। इसमें ग्लूकोस के आंशिक ऑक्सीकरण के फलस्वरूप पाइरुविक अम्ल के दो अणु प्राप्त होते हैं। ग्लाइकोलिसिस प्रक्रिया में कुल 8 ATP अणु प्राप्त होते हैं।
(ख) ऐसीटिल कोएन्जाइम-A का निर्माण (Formation of Acetyl CoA)
यह माइटोकॉन्ड्रिया के मैट्रिक्स में सम्पन्न होती है। कोशिकाद्रव्य (सायटोसोल) में उत्पन्न पाइरुविक अम्ल माइटोकॉन्ड्रिया में प्रवेश करके NAD+ और कोएन्जाइम-A से संयुक्त होकर पाइरुविक अम्ल का ऑक्सीकीय CO2 वियोजन (Oxidative decarboxylation) होता है। (UPBoardSolutions.com) इस क्रिया में CO2 का एक अणु मुक्त होता है और NAD.2H बनता है और अन्त में ऐसीटिल कोएन्जाइम-A बनता है। पाइरुविक अम्ल + CoA + NAD
(ग) क्रेब्स चक्र या ट्राइकार्बोक्सिलिक अम्ल चक्र (Krebs Cycle or Tricarboxylic Acid Cycle) :
यह पूर्ण क्रिया माइटोकॉन्ड्रिया के मैट्रिक्स में सम्पन्न होती है। क्रेब्स चक्र के एन्जाइम्स मैट्रिक्स में पाए जाते हैं। ऐसीटिल कोएन्जाइम-A माइटोकॉन्ड्रिया के मैट्रिक्स में उपस्थित ऑक्सेलोऐसीटिक अम्ल से क्रिया करके 6-कार्बन यौगिक सिट्रिक अम्ल बनाता है। सिट्रिक अम्ल का क्रमिक निम्नीकरण होता है और अन्त: में पुनः ऑक्सेलोऐसीटिक अम्ल प्राप्त हो जाता है। क्रेब्स चक्र में 2 अणु CO2 के मुक्त होते हैं। चार स्थानों पर 2H+ मुक्त होते हैं जिन्हें हाइड्रोजनग्राही NAD यो FAD ग्रहण करते हैं। क्रेब्स चक्र में 24ATP अणु ETS द्वारा प्राप्त होते है। ऐसीटिल कोएन्जाइम
(घ) इलेक्ट्रॉन परिवहन तन्त्र (Electron Transport System) :
यह माइटोकॉण्ड्रिया की भीतरी सतह पर स्थित F कण या ऑक्सीसोम्स पर सम्पन्न होता है। क्रेब्स चक्र की ऑक्सीकरण क्रिया में डिहाइड्रोजिनेस (dehydrogenase) एन्जाइम विभिन्न पदार्थों से हाइड्रोजन तथा इलेक्ट्रॉन के जोड़े मुक्त कराते हैं। हाइड्रोजन तथा इलेक्ट्रॉन कुछ मध्यस्थ संवाहकों के द्वारा होते हुए ऑक्सीजन से मिलकर जल का निर्माण करते हैं। हाइड्रोजन परमाणुओं के एक इलेक्ट्रॉनग्राही से दूसरे इलेक्ट्रॉनग्राही पर स्थानान्तरित होते समय ऊर्जा मुक्त होती है। यह ऊर्जा ATP में संचित हो जाती है।
प्रश्न.5. क्रेब्स चक्र का समग्र रेखाचित्र बनाइए।
प्रश्न.6. इलेक्ट्रॉन परिवहन तन्त्र का वर्णन कीजिए।
इलेक्ट्रॉन परिवहन तन्त्र ग्लाइकोलिसिस तथा क्रेब्स चक्र के विभिन्न पदों में अपघटन के फलस्वरूप उत्पन्न हुई ऊर्जा के अधिकांश भाग का परिवहन हाइड्रोजनग्राही करते हैं; जैसे-NAD, NADP, FAD आदि। ये 2H+ (हाइड्रोजन आयन) के साथ मिलकर अपचयित (reduce) हो जाते हैं। इन्हें वापसे ऑक्सीकृत (oxidise) करने के लिए विशेष तन्त्र, इलेक्ट्रॉन स्थानान्तरण तन्त्र (ETS = Electron Transport System) की आवश्यकता होती है। यह तन्त्र इलेक्ट्रॉन्स (e–) को एक के बाद एक ग्रहण करते हैं। तथा उन पर उपस्थित ऊर्जा स्तर (energy level) को कम करते हैं। इस कार्य का मुख्य उद्देश्य कुछ ऊर्जा को निर्मुक्त करना है। यही निर्मुक्त ऊर्जा ATP (adenosine triphosphate) में संगृहीत हो जाती है। इलेक्ट्रॉन परिवहन तन्त्र एक श्रृंखलाबद्ध क्रम के रूप में होता है जिसमें कई सायटोक्रोम एन्जाइम्स (cytochrome enzymes) होते हैं। इलेक्ट्रॉन परिवहन तन्त्र के एन्जाइम माइटोकॉन्ड्रिया की अन्त:कला (inner membrane) में श्रृंखलाबद्ध क्रम से लगे रहते हैं। सायटोक्रोम्स लौह तत्त्व के परमाणु वाले वर्णक हैं, जो इलेक्ट्रॉन मुक्त कर ऑक्सीकृत (oxidised) हो जाते हैं
साइटोक्रोम्स की इस श्रृंखला में प्रारम्भिक साइटोक्रोम ‘बी’ (cytochrome ‘ b’ = cyt ‘b’ Fe3+) उच्च ऊर्जा वाले इलेक्ट्रॉन (e–) को ग्रहण करता है तथा अपचयित हो जाता है। इलेक्ट्रॉन का स्थानान्तरण हाइड्रोजन आयन्स से होता है, जो पदार्थ से NAD या NADP के द्वारा लाए गए थे। बाद में ये FAD को दे दिए गए थे और यहाँ से स्वतन्त्र कर दिए गए। इलेक्ट्रॉन्स के Cyt ‘b’ Fe+++ पर स्थानान्तरण में सम्भवत: सह-एन्जाइम ‘क्यू’ (Co-enzyme ‘Q’ = Co ‘Q’ = ubiquinone) सहयोग (UPBoardSolutions.com) करता है। इस प्रारम्भिक सायटोक्रोम के बाद श्रृंखला में कईऔर सायटोक्रोम रहते हैं। ये क्रमश: इलेक्ट्रॉन को अपने से पहले वाले सायटोक्रोम से ग्रहण करते हैं तथा अपने से अगले सायटोक्रोम को स्थानान्तरित कर देते है।श्रृंखला के अन्तिम सायटोक्रोम से दो इलेक्ट्रॉन्स, ऑक्सीजन के एक परमाणु से मिलकर उसे सक्रिय कर देते हैं। अब यह ऑक्सीजन परमाणु उपलब्ध दो हाइड्रोजन आयन्स के साथ जुड़कर जेल का एक अणु (H2O) बना लेता है। श्वसन से सम्बन्धित यह सायटोक्रोम तन्त्र माइटोकॉन्ड्रिया की अन्त:कला (inner membrane) में स्थित होता है।
ए०टी०पी० का संश्लेषण
श्वसन क्रिया दो क्रियाओं ग्लाकोलिसिस (glycolysis) तथा क्रेब्स चक्र (Krebs Cycle) में पूर्ण होती है। इन क्रियाओं के अन्त में कार्बन डाइऑक्साइड तथा जल बनते हैं। जबकि दो अणु काम में आ जाते हैं। अतः केवल दो ATP अणुओं को लाभ होता है। ग्लाइकोलिसिस तथा क्रेब्स चक्र में मुक्त 2H+ (हाइड्रोजन आयन) को NAD, NADP या FAD ग्रहण करते हैं। इनसे मुक्त परमाणु हाइड्रोजन अणु हाइड्रोजन में बदलकर ऑक्सीजन के साथ मिलकर जल बनाते हैं। इस क्रिया में मुक्त 2e– (इलेक्ट्रॉन) इलेक्ट्रॉन स्थानान्तरण तन्त्र (ETS) में पहुंचकर धीरे-धीरे अपना ऊर्जा स्तर (energy level) कम करते हैं। इस प्रकार निष्कासित ऊर्जा ADP को ATP में बदलने के काम आती है। इस प्रकार प्रत्येक जोड़े 2H+ से तीन ATP अणु बनते हैं। FAD पर स्थित 2H+ से केवल दो ATP अणु ही बनते हैं। इस प्रकार ग्लाइकोलिसिस से लेकर पूर्ण ऑक्सीकरण होने तक कुल ATP अणुओं की संख्य निम्नलिखित हो जाती है(a) ग्लाइकोलिसिस की अभिक्रियाओं में(कुल चार अणु बनते हैं तथा दो प्रयुक्त हो जाते हैं)। = 2 ATP(b) ग्लाइकोलिसिस में ही बने दो NAD.H,(ETS में जाने के बाद) = 6 ATP
(c) क्रेब्स चक्र के पूर्व पाइरुविक अम्ल से ऐसीटिल को-एन्जाइम ‘ए’ बनते समय NAD.H2 बनने तथा ETS में जाने के बाद
(दो अणु पाइरुविक अम्ल से दो NAD.H2) बनते हैं। = 6ATP
(d) क्रेब्स चक्र में बने 3NADH2 के ETS में जाने पर [दो बार यही चक्र पूरा होने पर ध्यान रहे, दो ऐसीटिल को-एन्जाइम ‘ए’
(acetyl Co ‘A’) अर्थात् एक ग्लूकोस के अणु से दो क्रेब्स चक्र में 6NADH2 की प्राप्ति होती है। ATP के 9 अणु बनाते हैं।]
9x 2 = 18 ATP
(e) क्रेब्स चक्र में ही FAD.H2 से (ETS में जाने पर) दो अणु ATP बनते हैं
(इस प्रकार, एक पूरे ग्लूकोस अणु से चार अणु ATP बनते हैं।) = 2 x 2 = 4 ATP
(f) क्रेब्स चक्र में ही सक्सीनिक अम्ल (succinic acid) बनते समय जी० टी० पी०
(GTP = (guanosine triphosphate)) का निर्माण होता है जो बाद में एक ADP को ATP में बदल देता है।
इस प्रकार कुल योग
ग्लिसरॉल फॉस्फेट शटल (Glycerol Phosphate Shuttle) की कार्य क्षमता कम होती है। इसमें दो अणु NADH,, जो ग्लाइकोलिसिस में बनते हैं, उनसे कभी-कभी 6 ATP के स्थान पर 4 ATP की ही प्राप्ति होती है। ये NADH, माइटोकॉन्ड्रिया के बाहर जीवद्रव्य में बनते हैं। NADH2 का अणु माइटोकॉन्ड्रिया के भीतर प्रवेश नहीं कर पाता, (UPBoardSolutions.com) यह अपने H+ माइटोकॉन्ड्रिया के भीतर भेजता है। मस्तिष्क तथा पेशियों की कोशिकाओं में प्रत्येक NADH2 के H+ के भीतर प्रवेश में 1 ATP अणु खर्च हो जाता है; अतः अन्त में कुल 36 ATP अणुओं की प्राप्ति होती है।
प्रश्न.7. निम्नलिखित के मध्य अन्तर कीजिए
(अ) ऑक्सीश्वसन तथा अनॉक्सीश्वसन
(ब) ग्लाइकोलिसिस तथा किण्वन
(स) ग्लाइकोलिसिस तथा सिट्रिक अम्ल चक्र
क्रेब्स चक्र या ट्राइकार्बोक्सिलिक अम्ल चक्र को सिट्रिक अम्ल चक्र (Citric Acid Cycle) भी कहते हैं। अन्तर के लिए प्रश्न 1 (ब) का उत्तर देखिए।
प्रश्न.8. शुद्ध ए०टी०पी० के अणुओं की प्राप्ति की गणना के दौरान आप क्या कल्पनाएँ करते हैं?
ए०टी०पी० अणुओं की प्राप्ति की कल्पनाएँ।
- यह एक क्रमिक, सुव्यवस्थित क्रियात्मक मार्ग है जिसमें एक क्रियाधार से दूसरे क्रियाधार का निर्माण होता है जिसमें ग्लाइकोलिसिस से शुरू होकर क्रेब्स चक्र तथा इलेक्ट्रॉन परिवहन तन्त्र (ETS) एक के बाद एक आती है।
- ग्लाइकोलिसिस में संश्लेषित NAD माइटोकॉन्ड्रिया में आता है, जहाँ उसका फॉस्फोरिलीकरण (UPBoardSolutions.com) होता है।
- श्वसन मार्ग के कोई भी मध्यवर्ती दूसरे यौगिक के निर्माण के उपयोग में नहीं आते हैं।
- श्वसन में केवल ग्लूकोस का उपयोग होता है। कोई दूसरा वैकल्पिक क्रियाधार श्वसन मार्ग के किसी भी मध्यवर्ती चरण में प्रवेश नहीं करता है।
वास्तव में सभी मार्ग (पथ) एकसाथ कार्य करते हैं। पथ में क्रियाधार आवश्यकतानुसार अन्दर- बाहर आते-जाते रहते हैं। आवश्यकतानुसार ATP का उपयोग हो सकता है। एन्जाइम की क्रिया की दर विभिन्न कारकों द्वारा नियन्त्रित होती है। श्वसन जीवन के लिए एक उपयोगी क्रिया है। सजीव तन्त्र में ऊर्जा का संग्रहण तथा निष्कर्षण होता रहता है।
प्रश्न.9. “श्वसनीय पथ एक ऐम्फीबोलिक पथ होता है।” इसकी चर्चा कीजिए।
श्वसनीय पथ एक ऐम्फीबोलिक पथ
- श्वसन क्रिया के लिए ग्लूकोस एक सामान्य क्रियाधार (substrate) है। इसे कोशिकीय ईंधन (cellular fuel) भी कहते हैं। कार्बोहाइड्रेट्स श्वसन क्रिया में प्रयोग किए जाने से पूर्व ग्लूकोस में बदल दिए जाते हैं। अन्य क्रियाधार श्वसन पथ में प्रयुक्त होने से पूर्व विघटित होकर ऐसे पदार्थों में बदले जाते हैं, जिनका उपयोग किया जा सके; जैसे—वसा पहले ग्लिसरॉल तथा वसीय अम्ल में विघटित होती है। वसीय अम्ल ऐसीटाइल कोएन्जाइम बनकर श्वसन मार्ग में प्रवेश करता है। ग्लिसरॉल फॉस्फोग्लिसरेल्डिहाइड (PGAL) में बदलकर श्वसन मार्ग में प्रवेश करता है। प्रोटीन्स विघटित होकर ऐमीनो अम्ल बनाती है। ऐमीनो अम्ल विऐमीनीकरण (deamination) के पश्चात् क्रेब्स चक्र के विभिन्न चरणों में प्रवेश करता है।
- इसी प्रकार जब वसा अम्ल का संश्लेषण होता है तो श्वसन मार्ग से ऐसीटाइल कोएन्जाइम अलग हो जाता है। अतः वसा अम्ल के संश्लेषण और विखण्डन के दौरान श्वसनीय मार्ग का उपयोग होता है। इसी प्रकार प्रोटीन के संश्लेषण व विखण्डन के दौरान भी श्वसनीय मार्ग का उपयोग होता है। इस प्रकार (UPBoardSolutions.com) श्वसनी पथ में अपचय (catabolic) तथा उपचय (anabolic) दोनों क्रियाएँ होती हैं। इसी कारण श्वसनी मार्ग (पथ) को ऐम्फीबोलिक पथ (amphibolic pathway) कहना अधिक उपयुक्त है न कि अपचय पथ।
प्रश्न.10. साँस (श्वसन) गुणांक को परिभाषित कीजिए, वसा के लिए इसका क्या मान है?
साँस (श्वसन) गुणांक एक दिए गए समय, ताप व दाब पर श्वसन क्रिया में निष्कासित CO2 व अवशोषित O2 के अनुपात को श्वसन (साँस) गुणांक या भागफल (R.Q.) कहते हैं। श्वसन पदार्थों के अनुसार श्वसन गुणांक भिन्न-भिन्न होता है।
वसा (fats) : का श्वसन गुणांक एक से कम होता है। वसीय पदार्थों के उपयोग से निष्कासित CO2की मात्रा अवशोषित O2 की मात्रा से कम होती है। वसा का R.Q. लगभग 0.7 होता है।
प्रश्न.11. ऑक्सीकारी फॉस्फोरिलीकरण क्या है?
ऑक्सीकारी फॉस्फोरिलीकरण ऑक्सीश्वसन क्रिया के विभिन्न चरणों में मुक्त हाइड्रोजन आयन्स (2H+) को हाइड्रोजनग्राही NAD या FAD ग्रहण करके अपचयित होकर NAD.2H या FAD.2H बनाता है। प्रत्येक NAD.2H अणु से दो इलेक्ट्रॉन (2e–) तथा दो हाइड्रोजन परमाणुओं (2H+) के निकलकर (UPBoardSolutions.com) ऑक्सीजन तक पहुँचने के क्रम में तीन और FAD.2H से दो ATP अणुओं का संश्लेषण होता है। ETS के अन्तर्गत इलेक्ट्रॉन परिवहन के फलस्वरूप मुक्त ऊर्जा ADP + Pi→ ATP क्रिया द्वारा ATP में संचित हो जाती है। प्रत्येक ATP अणु बनने में प्राणियों में 7:3 kcal और पौधों में 10-12 kcal ऊर्जा संचय होती है। यह क्रिया फॉस्फोरिलीकरण (phosphorylation) कहलाती है, क्योंकि श्वसन क्रिया में यह क्रिया O2 की उपस्थिति में होती है; अतः इसे ऑक्सीकारी फॉस्फोरिलीकरण (oxidative phosphorylation) कहते हैं।
प्रश्न.12. सॉस के प्रत्येक चरण में मुक्त होने वाली ऊर्जा का क्या महत्त्व है?
(क) कोशिका में जैव रासायनिक ऑक्सीकरण के दौरान श्वसनी क्रियाधार में संचित सम्पूर्ण रासायनिक ऊर्जा एकसाथ मुक्त नहीं होती, जैसा कि दहन प्रक्रिया में होता है। यह एन्जाइम्स द्वारा नियन्त्रित चरणबद्ध धीमी अभिक्रियाओं के रूप में मुक्त होती है। मुक्त रासायनिक ऊर्जा गतिज ऊर्जा के रूप में ATP में संचित हो जाती है।
(ख) श्वसन प्रक्रिया में मुक्त ऊर्जा सीधे उपयोग में नहीं आती। श्वसन प्रक्रिया में मुक्त ऊर्जा का उपयोग ATP संश्लेषण में होता है।
(ग) ATP ऊर्जा मुद्रा का कार्य करता है। कोशिका की समस्त जैविक क्रियाओं के लिए ऊर्जा ATP के टूटने से प्राप्त होती है।
(घ) विभिन्न जटिल कार्बनिक पदार्थों के संश्लेषण में भी ATP से मुक्त ऊर्जा उपयोग में आती है।
(ङ) कोशिकाओं में खनिज लवणों के आवागमन में प्रयुक्त ऊर्जा ATP से ही प्राप्त होती है।
916 docs|393 tests
|
916 docs|393 tests
|