Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Previous Year Questions: Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2024

Q1: If sin α = √3/2 , cos β = √3/2 then tan α. tan β is:     (CBSE 2024)
(a) √3
(b) 1/√3
(c) 1
(d) 0

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
sin α = √3/2, ⇒ sin α  = sin 60º
⇒ α = 60º
∵ cos β = √3/2, 
⇒ cos β = cos 30º 
⇒ β = 30º 
tan α. tan β = tan 60º. tan 30º
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 1


Q2: Evaluate: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry        (CBSE 2024)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q3: Prove that: (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1     (CBSE 2024)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
L.H.S. = (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
= (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 1 = R.H.S.
Hence, proved.

Previous Year Questions 2023

Q4: If 2 tan A = 3, then find the value of Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Hence, the answer is 1.


Q5: 5/8 sec260° - tan260° + cos245° is equal to    (2023)
(a) 5/3
(b) -1/2
(c) 0
(d) -1/4

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol:
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry 


Q6: Evaluate 2 sec2θ + 3 cosec2θ - 2 sin θ cos θ if θ = 45°  (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Since θ = 45°, sec 45° = √2, cosec 45° = √2, sin 45° = 1/√2 cos 45° = 1/√2
2sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 4 + 6 – 1 = 9


Q7: Which of the following is true for all values of θ(0o ≤ θ ≤ 90o)? (2023)
(a) 
cos2θ - sin2θ - 1
(b) 
cosec2θ - sec2θ- 1
(c) 
sec2θ - tan2θ - 1
(d) 
cot2θ- tan2θ = 1

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)


Q8: If sinθ +cosθ = √3. then find the value of sinθ . cosθ.  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, sinθ +cosθ = √3
Squaring both sides, we get (sinθ + cosθ)2 = 3
⇒ sin2θ + cos2θ + 2sinθ cosθ = 3
⇒ 2sinθ cosθ = 3 - 1     ( ∵ sin2θ + cos2θ = 1)
⇒ 2sinθ cosθ = 2
⇒  sinθ cosθ = 1


Q9: If  sin α = 1/√2 and cot β = √3, then find the value of cosec α + cosec β.  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, sin α = 1/√2 and cot β = √3
We know that, cosec α = 1/sinα = √2
Also, 1 + cot2β = cosec2β
⇒ cosec2β = 4
⇒ cosec β = 4
Now, cosec α + cosec β = √2 + 2


Q10: Prove that the Following Identities: Sec A (1 + Sin A) ( Sec A - tan A) = 1  (2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: LHS = sec A(1 + sin A )( sec A - tan A)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
= 1
= RHS
Hence proved..


Q11: (secθ – 1) (cosec2 θ – 1) is equal to: 
(a) –1 
(b) 1 
(c) 0 
(d) 2 (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (b)
(sec2 θ – 1) (cosec2 θ – 1) = tan2 θ.cot2 θ  Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 1


Q12: If sin θ – cos θ =  0,  then find the value of sin4 θ + cos4 θ. (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, 
sin θ – cos θ = 0 
sin θ = cos θ 
tan θ = 1 
tan θ = tan 45° 
⇒ θ = 45° 
Now, sin4 θ + cos4 θ = sin45° + cos45°
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q13: Prove that Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  (CBSE 2023)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= tan A
= RHS

Previous Year Questions 2022

Q14: Given that cos θ = √3/2, then the value of  Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is  (2022)
(a) -1
(b) 1
(c) 1/2
(d) -1/2

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol:
Given, cosθ = √3/2  = B/H
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Let B = √3k and H = 2k
∴ Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry [By Pythagoras Theorem]
⇒√k2 = k
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q15: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is equal to   (2022)
(a) 0
(b) 1
(c) sinθ + cosθ
(d) sinθ - cosθ

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol: We have,
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q16: The value of θ for which 2 sin2θ = 1, is   (2022)
(a) 15° 
(b) 30°
(c) 45° 
(d) 60°

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Sol: Given, 2 sin2θ = 1 ⇒ sin2θ = 1/2
⇒ 2θ = 30°
⇒ θ = 15°


Q17: If sin2θ + sinθ = 1, then find the value of cos2θ + cos4θ is   (2022)
(a) -1
(b) 1
(c) 0
(d) 2

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (b)
Sol: Given, sin2θ + sinθ = 1 ---(i)
sinθ = 1 - sin2θ
⇒ sinθ = cos2θ ---(ii)
∴ cos2θ + cos4θ
= sinθ + sin2θ [From (ii)]
= 1        [From (i)]

Previous Year Questions 2021

Q18: If 3 sin A = 1. then find the value of sec A.    (2021 C)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have, 3 sin A = 1
∴ sin A = 1/3
Now by using cosA = 1 - sin2 A, we get
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q19: Show that: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry    (2021 C)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have, L.H.S.
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
[By using 1 + tan2θ = sec2θ and 1 + cot2 θ = cosec2θ ]
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Hence,
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2020

Q20: If sin θ = cos θ, then the value of tan2 θ + cot2 θ is (2020)
(a) 2
(b) 4
(c) 1
(d) 10/3

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Sol: We have, sin θ = cos θ
or sin θ / cos θ = 1
⇒ tan θ = 1 and cot θ = 1     [∵ cot θ = 1/tanθ]
∴ tanθ + cotθ = 1 + 1 = 2
Hence, A option is correct.


Q21: Given 15 cot A = 8, then find the values of sin A and sec A.    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: In right angle ΔABC we have
15 cot A = 8
⇒ cot A = 8/15
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
Since, cot A = AB/BC
∴ AB/BC = 8/15
Let AB = 8k and BC = 15k
By using Pythagoras theorem, we get
AC= AB2 + BC2
⇒ (8k)2 + (15)2 = 64k2 + 225k2 = 289k2 = (17k)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
So, sec A = 1/cosA = 17/8


Q22: Write the value of sin2 30° + cos2 60°.     (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:  We have, sin2 30° + cos2 60°
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry


Q23: The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is      (2020)
(a) a+ b2
(b) a + b
(c) Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
(d) Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (c)
Sol: Given the point A (cos θ + b sin θ , 0), (0 , a sin θ − b cos θ)
By distance formula,
The distance of
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
[∵ cos2θ + sin2θ = 1]


Q24: 5 tan2θ - 5 sec2θ = ____________.    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We have 5(tan2θ - sec2θ)
= 5(-1) = - 5 [By using 1 + tan2θ = sec2 θ ⇒ tan2θ - sec2θ = - 1]


Q25: If sinθ + cosθ = √3. then prove that tan θ + cot θ = 1    (2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: sin θ + cos θ =√3
= (sinθ + cosθ)= 3
= sin2 θ + cos2 θ + 2sin θ cos θ = 3
⇒ 2sin θ cos θ = 2
⇒ sin θ cos θ = 1
⇒ sin θ cos θ = sin2θ + cos2θ
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry
⇒ tan θ + cot θ = 1


Q26: If x = a sinθ and y = b cosθ , write the value of (b2x2 + a2y2). (CBSE 2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given, x = a sin θ and y = b cos θ 
b2x2 + a2y2 = b2(a2 sin2 θ) + a2(b2 cos2 θ) 
= a2b2 [sin2 θ + cos2 θ] 
= a2b2 [sin2θ + cos2θ = 1]


Q27: Prove that: 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0. (CBSE 2020)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: We know that, 
sin2 θ + cos2 θ = 1 
So, (sin2 θ + cos2 θ) 2 = 12
⇒ sin4 θ + cosθ + 2sin2 θ cos2 θ = 1 
i.e., sin4 θ + cos4 θ = 1 – 2 sin2 θ cos2 θ …(i) 
Also, (sin2 θ + cos2 θ) 3 = 13 
⇒ sin6 θ + cos6 θ + 3 sin2 θ cos2 θ (sin2 θ + cos2 θ) = 1 
⇒ sin6 θ+ cos6 θ+ 3sin2 θ cos2 θ (1) = 1 
i.e., sin6 θ + cos6 θ = 1 – 3 sin2 θ cos2 θ …(ii) 
Now, 
LHS = 2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) + 1 
= 2(1 – 3 sin2 θ cos2 θ) – 3(1 – 2 sin2 θ cos2 θ) + 1 
= 2 – 3 + 1 
= 0 
Hence, proved.


Q28: Prove that: (sin4 θ – cos4 θ + 1) cosec2 θ = 2.  [CBSE 2020].

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: L.H.S. = (sin4 θ – cos4 θ + 1) cosec2 θ 
= [(sin2 θ + cos2 θ) (sin2 θ – cos2 θ) + 1] cosec2 θ 
[(1) (sin2 θ – cos2 θ) + 1] cosecθ   as [ sin2 θ + cos2 θ = 1] 
= [sin2 θ + (1 – cos2 θ)] cosec2 θ 
= (sinθ + sin2 θ) cosec2θ
= (2 sin2 θ) cosec2 θ
= Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

= 2 × 1
= 2 = R.H.S.
Hence, proved.

Previous Year Questions 2019

Q29: If sin x + cos y = 1, x = 30° and y is acute angle, find the value of y.    (2019)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Given,
⇒ sin x + cos y = 1
⇒ sin 30° + cos y = 1
⇒ 1/2 + cos y = 1
⇒ cos y = 1 - 1/2
⇒ cos y = 1/2
⇒ cos y = cos 60°.
Hence, y = 60°.


Q30: If cosec2 θ (cos θ - 1)(1 + cos θ) = k, then what is the value of k?   (2019)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans:  Given:
cosec2 θ (cos θ - 1)(1 + cos θ) = k
Concept used:
Cosec α = 1/Sin α
Sin2 α + Cos2 α = 1
(a + b)(a - b) = a2 - b2
Calculation:
cosec2 θ (cos θ - 1)(1 + cos θ) = k
⇒ cosec2 θ (1 - cos θ)(1 + cos θ) = -k
⇒ cosec2 θ (1 - cos2 θ) = -k
⇒ cosec2 θ × sin2 θ = -k
⇒ 1 = -k
⇒ k = -1
∴ The value of k is (-1).


Q31: The value of ( 1 + cot A − cosec A ) ( 1 + tan A + sec A ) is

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

Previous Year Questions 2013

Q32: If sec θ + tan θ + 1 = 0, then sec θ – tan θ is: 
(a) –1 
(b) 1 
(c) 0 
(d) 2  (CBSE 2013)

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry  View Answer

Ans: (a)
Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometrysecθ+tanθ+1=0

secθ+tanθ+1=0

secθ+tanθ=1

Multiplying and dividing LHS by sec θ – tan θsecθtanθ, we get

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

(secθ+tanθ)×(secθtanθsecθtanθ)=1

(sec2θtan2θsecθtanθ)=1

(1+tan2θtan2θsecθtanθ)=1(sec2θ=1+tan2θ)

(1secθtanθ)=1

(secθtanθ)=Hence, the correct option is (a).

The document Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
126 videos|457 docs|75 tests

Top Courses for Class 10

FAQs on Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

1. What are the basic trigonometric ratios I need to know for Grade 10?
Ans. The basic trigonometric ratios you need to know are sine (sin), cosine (cos), and tangent (tan). They are defined as follows for a right triangle: - sin(θ) = opposite side / hypotenuse - cos(θ) = adjacent side / hypotenuse - tan(θ) = opposite side / adjacent side.
2. How can I remember the trigonometric ratios easily?
Ans. A common mnemonic to remember the basic trigonometric ratios is "SOH-CAH-TOA": - SOH: Sine = Opposite / Hypotenuse - CAH: Cosine = Adjacent / Hypotenuse - TOA: Tangent = Opposite / Adjacent.
3. How do I solve problems involving the sine rule in trigonometry?
Ans. To solve problems using the sine rule, you can use the formula a/sin(A) = b/sin(B) = c/sin(C), where a, b, and c are the sides of the triangle opposite to angles A, B, and C respectively. This allows you to find unknown sides or angles in non-right triangles.
4. What is the difference between sine, cosine, and tangent functions?
Ans. The difference lies in their definitions related to a right triangle: - Sine (sin) measures the ratio of the length of the opposite side to the hypotenuse. - Cosine (cos) measures the ratio of the length of the adjacent side to the hypotenuse. - Tangent (tan) measures the ratio of the opposite side to the adjacent side.
5. How can I apply trigonometry in real-life situations?
Ans. Trigonometry is used in various real-life situations such as in architecture for designing buildings, in navigation for determining positions, in physics for analyzing forces, and in computer graphics for animations. Understanding angles and distances using trigonometric ratios helps in these applications.
126 videos|457 docs|75 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Exam

,

Important questions

,

Semester Notes

,

practice quizzes

,

Summary

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

ppt

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

shortcuts and tricks

,

MCQs

,

study material

,

past year papers

,

Class 10 Maths Chapter 8 Previous Year Questions - Introduction to Trigonometry

,

Extra Questions

,

Previous Year Questions with Solutions

,

video lectures

,

Objective type Questions

,

mock tests for examination

,

pdf

,

Free

,

Viva Questions

,

Sample Paper

;