Some time ago I published this post about SOCl2 discussing the mechanism of SOCl2 converting secondary alcohols to alkyl chlorides with secondary through an SN2 pathway:
The mechanism showing inversion with SOCl2 is not what happens experimentally. When a secondary alcohol is treated with SOCl2 (and nothing else) the usual pathway is retention.
The record should be set straight about this, so this post will cover:
In the late 19th century, Paul Walden performed a series of fundamental experiments on the stereochemistry of various reactions of sugars (and sugar derivatives). Walden noted that when (+)-malic acid treated with PCl5, the product was (–) chlorosuccinic acid – a process that proceeded with inversion of stereochemistry. When (+) malic acid was treated with thionyl chloride (SOCl2), however the product was (+)-chlorosuccinic acid. This proceeds with retention of stereochemistry.
How can we understand this?
The reaction of malic acid with PCl5 leading to inversion of stereochemistry is an example of what we now call the SN2 reaction, and Walden was the first to make the observation that the stereochemistry is inverted. In fact the process of stereochemical inversion observed during the SN2 reaction is sometimes called Walden inversion in his honor. By the time most students encounter SOCl2 in their courses, the SN2 is a familiar reaction.
What is much more curious is the observation that malic acid treated with SOCl2 leads to substitution with retention. Sharp readers may recall that “retention” of stereochemistry can be obtained if two successive SN2 reactions occur [double inversion = retention]. Perhaps that is what is going on here? Maybe the carboxylic acid of malice acid can act as a nucleophile in a first (intramolecular) SN2, and then Cl- coming in for the second?
Good idea – but this retention of configuration occurs even in cases where no group can possibly do an intramolecular SN2. There must be something else going on. And after a lot of experimental work, this is the best proposal we have:
Good idea – but this retention of configuration occurs even in cases where no group can possibly do an intramolecular SN2. There must be something else going on. And after a lot of experimental work, this is the best proposal we have:
This is called, SNi (nucleophilic substitution with internal return): what happens here is that SOCl2 corrdinates to the alcohol, with loss of HCl and formation of a good leaving group (“chlorosulfite”). The chlorosulfite leaving group can spontaneously depart, forming a carbocation, and when it does so, an “intimate ion pair” is formed, where the carbocation and negatively charged leaving group are held tightly together in space. From here, the chlorine can act as a nucleophile – attacking the carbocation on the same face from which it was expelled – and after expulsion of SO2, we have formation of an alkyl chloride with retention of configuration.
So the chlorosulfite leaving group (SO2Cl) is quite special in that it can deliver a nucleophile (chlorine) to the same face it departs from, with simultaneous loss of SO2.
Here’s the twist. As it turns out, the stereochemistry of this reaction can change to inversion if we add a mild base – such as pyridine.
Observation: When base is added, SOCl2 now gives inversion
Retention of stereochemistry with SOCl2 alone, inversion with SOCl2 and pyridine. What’s happening here? How does pyridine affect the course of this reaction?
Both reactions form the “chlorosulfite” intermediate. But when pyridine (a decent nucleophile) is present, it can attack the chlorosulfite, displacing chloride ion and forming a charged intermediate. Now, if the leaving group departs, forming a carbocation, there’s no lone pair nearby on the same face that can attack.
In other words, by displacing chloride ion, pyridine shuts down the SNi mechanism.
Even though the SNi can’t occur here, we still have a very good leaving group, and a decent nucleophile – chloride ion – and so chloride attacks the carbon from the backside, leading to inversion of configuration and formation of a C-Cl bond. This, of course, the SN2 reaction.
Why inversion this time? Because pyridine displaces chlorine from sulfur, and "internal return" from the leaving group cannot occur
The result is an SN2 reaction!
The bottom line is this:
SOCl2 plus alcohol gives retention of configuration, SOCl2 plus alcohol plus pyridine gives inversion of configuration (SN2)
1. What is the reaction between SOCl2 and alcohols? |
2. Does the conversion of alcohols to chlorides with SOCl2 always proceed with inversion? |
3. What is the SNi mechanism? |
4. How does adding pyridine to SOCl2 lead to inversion via the SN2 mechanism? |
5. What is the difference between SN2 and SNi mechanisms? |
|
Explore Courses for UPSC exam
|