Sorting Algorithms- 2

# Sorting Algorithms- 2 Notes | Study Algorithms - Computer Science Engineering (CSE)

## Document Description: Sorting Algorithms- 2 for Computer Science Engineering (CSE) 2022 is part of Algorithms preparation. The notes and questions for Sorting Algorithms- 2 have been prepared according to the Computer Science Engineering (CSE) exam syllabus. Information about Sorting Algorithms- 2 covers topics like Bubble Sort and Sorting Algorithms- 2 Example, for Computer Science Engineering (CSE) 2022 Exam. Find important definitions, questions, notes, meanings, examples, exercises and tests below for Sorting Algorithms- 2.

Introduction of Sorting Algorithms- 2 in English is available as part of our Algorithms for Computer Science Engineering (CSE) & Sorting Algorithms- 2 in Hindi for Algorithms course. Download more important topics related with notes, lectures and mock test series for Computer Science Engineering (CSE) Exam by signing up for free. Computer Science Engineering (CSE): Sorting Algorithms- 2 Notes | Study Algorithms - Computer Science Engineering (CSE)
 1 Crore+ students have signed up on EduRev. Have you?

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.

Example:
First Pass:
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.
Third Pass:
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )

Following is the implementations of Bubble Sort.

• C++
// C++ program for implementation of Bubble sort
#include <bits/stdc++.h>
using namespace std;
void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
int i, j;
for (i = 0; i < n-1; i++)
// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);
}
/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i = 0; i < size; i++)
cout << arr[i] << " ";
cout << endl;
}
// Driver code
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
cout<<"Sorted array: \n";
printArray(arr, n);
return 0;
}
// This code is contributed by rathbhupendra
• C
// C program for implementation of Bubble sort
#include <stdio.h>
void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
// A function to implement bubble sort
void bubbleSort(int arr[], int n)
{
int i, j;
for (i = 0; i < n-1; i++)
// Last i elements are already in place
for (j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
swap(&arr[j], &arr[j+1]);
}
/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);
printf("\n");
}
// Driver program to test above functions
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
}
• Java
// Java program for implementation of Bubble Sort
class BubbleSort
{
void bubbleSort(int arr[])
{
int n = arr.length;
for (int i = 0; i < n-1; i++)
for (int j = 0; j < n-i-1; j++)
if (arr[j] > arr[j+1])
{
// swap arr[j+1] and arr[j]
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
/* Prints the array */
void printArray(int arr[])
{
int n = arr.length;
for (int i=0; i<n; ++i)
System.out.print(arr[i] + " ");
System.out.println();
}
// Driver method to test above
public static void main(String args[])
{
BubbleSort ob = new BubbleSort();
int arr[] = {64, 34, 25, 12, 22, 11, 90};
ob.bubbleSort(arr);
System.out.println("Sorted array");
ob.printArray(arr);
}
}
/* This code is contributed by Rajat Mishra */
• Python
# Python program for implementation of Bubble Sort
def bubbleSort(arr):
n = len(arr)
# Traverse through all array elements
for i in range(n):
# Last i elements are already in place
for j in range(0, n-i-1):
# traverse the array from 0 to n-i-1
# Swap if the element found is greater
# than the next element
if arr[j] > arr[j+1] :
arr[j], arr[j+1] = arr[j+1], arr[j]
# Driver code to test above
arr = [64, 34, 25, 12, 22, 11, 90]
bubbleSort(arr)
print ("Sorted array is:")
for i in range(len(arr)):
print ("%d" %arr[i]),
• C#
// C# program for implementation
// of Bubble Sort
using System;
class GFG
{
static void bubbleSort(int []arr)
{
int n = arr.Length;
for (int i = 0; i < n - 1; i++)
for (int j = 0; j < n - i - 1; j++)
if (arr[j] > arr[j + 1])
{
// swap temp and arr[i]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
/* Prints the array */
static void printArray(int []arr)
{
int n = arr.Length;
for (int i = 0; i < n; ++i)
Console.Write(arr[i] + " ");
Console.WriteLine();
}
// Driver method
public static void Main()
{
int []arr = {64, 34, 25, 12, 22, 11, 90};
bubbleSort(arr);
Console.WriteLine("Sorted array");
printArray(arr);
}
}
// This code is contributed by Sam007
• PHP
<?php
// PHP program for implementation
// of Bubble Sort
function bubbleSort(&\$arr)
{
\$n = sizeof(\$arr);
// Traverse through all array elements
for(\$i = 0; \$i < \$n; \$i++)
{
// Last i elements are already in place
for (\$j = 0; \$j < \$n - \$i - 1; \$j++)
{
// traverse the array from 0 to n-i-1
// Swap if the element found is greater
// than the next element
if (\$arr[\$j] > \$arr[\$j+1])
{
\$t = \$arr[\$j];
\$arr[\$j] = \$arr[\$j+1];
\$arr[\$j+1] = \$t;
}
}
}
}
// Driver code to test above
\$arr = array(64, 34, 25, 12, 22, 11, 90);
\$len = sizeof(\$arr);
bubbleSort(\$arr);
echo "Sorted array : \n";
for (\$i = 0; \$i < \$len; \$i++)
echo \$arr[\$i]." ";
// This code is contributed by ChitraNayal.
?>
• Javascript
<script>
function swap(arr, xp, yp)
{
var temp = arr[xp];
arr[xp] = arr[yp];
arr[yp] = temp;
}
// An optimized version of Bubble Sort
function bubbleSort( arr, n)
{
var i, j;
for (i = 0; i < n-1; i++)
{
for (j = 0; j < n-i-1; j++)
{
if (arr[j] > arr[j+1])
{
swap(arr,j,j+1);
}
}
}
}
/* Function to print an array */
function printArray(arr, size)
{
var i;
for (i=0; i < size; i++)
document.write(arr[i]+ " ");
document.write("\n");
}
// Driver program to test above functions
var arr = [64, 34, 25, 12, 22, 11, 90];
var n = 7;
document.write("UnSorted array: \n");
printArray(arr, n);
bubbleSort(arr, n);
document.write("Sorted array: \n");
printArray(arr, n);
</script>

Output:
Sorted array:
11 12 22 25 34 64 90
<!—-Illustration:
—>
Optimized Implementation:
The above function always runs O(n^2) time even if the array is sorted. It can be optimized by stopping the algorithm if inner loop didn’t cause any swap.

• CPP
// Optimized implementation of Bubble sort
#include <stdio.h>
void swap(int *xp, int *yp)
{
int temp = *xp;
*xp = *yp;
*yp = temp;
}
// An optimized version of Bubble Sort
void bubbleSort(int arr[], int n)
{
int i, j;
bool swapped;
for (i = 0; i < n-1; i++)
{
swapped = false;
for (j = 0; j < n-i-1; j++)
{
if (arr[j] > arr[j+1])
{
swap(&arr[j], &arr[j+1]);
swapped = true;
}
}
// IF no two elements were swapped by inner loop, then break
if (swapped == false)
break;
}
}
/* Function to print an array */
void printArray(int arr[], int size)
{
int i;
for (i=0; i < size; i++)
printf("%d ", arr[i]);
printf("n");
}
// Driver program to test above functions
int main()
{
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("Sorted array: \n");
printArray(arr, n);
return 0;
}
• Java
// Optimized java implementation
// of Bubble sort
import java.io.*;
class GFG
{
// An optimized version of Bubble Sort
static void bubbleSort(int arr[], int n)
{
int i, j, temp;
boolean swapped;
for (i = 0; i < n - 1; i++)
{
swapped = false;
for (j = 0; j < n - i - 1; j++)
{
if (arr[j] > arr[j + 1])
{
// swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// IF no two elements were
// swapped by inner loop, then break
if (swapped == false)
break;
}
}
// Function to print an array
static void printArray(int arr[], int size)
{
int i;
for (i = 0; i < size; i++)
System.out.print(arr[i] + " ");
System.out.println();
}
// Driver program
public static void main(String args[])
{
int arr[] = { 64, 34, 25, 12, 22, 11, 90 };
int n = arr.length;
bubbleSort(arr, n);
System.out.println("Sorted array: ");
printArray(arr, n);
}
}
// This code is contributed
// by Nikita Tiwari.
• Python3
# Python3 Optimized implementation
# of Bubble sort
# An optimized version of Bubble Sort
def bubbleSort(arr):
n = len(arr)
# Traverse through all array elements
for i in range(n):
swapped = False
# Last i elements are already
#  in place
for j in range(0, n-i-1):
# traverse the array from 0 to
# n-i-1. Swap if the element
# found is greater than the
# next element
if arr[j] > arr[j+1] :
arr[j], arr[j+1] = arr[j+1], arr[j]
swapped = True
# IF no two elements were swapped
# by inner loop, then break
if swapped == False:
break
# Driver code to test above
arr = [64, 34, 25, 12, 22, 11, 90]
bubbleSort(arr)
print ("Sorted array :")
for i in range(len(arr)):
print ("%d" %arr[i],end=" ")
# This code is contributed by Shreyanshi Arun
• C#
// Optimized C# implementation
// of Bubble sort
using System;
class GFG
{
// An optimized version of Bubble Sort
static void bubbleSort(int []arr, int n)
{
int i, j, temp;
bool swapped;
for (i = 0; i < n - 1; i++)
{
swapped = false;
for (j = 0; j < n - i - 1; j++)
{
if (arr[j] > arr[j + 1])
{
// swap arr[j] and arr[j+1]
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
swapped = true;
}
}
// IF no two elements were
// swapped by inner loop, then break
if (swapped == false)
break;
}
}
// Function to print an array
static void printArray(int []arr, int size)
{
int i;
for (i = 0; i < size; i++)
Console.Write(arr[i] + " ");
Console.WriteLine();
}
// Driver method
public static void Main()
{
int []arr = {64, 34, 25, 12, 22, 11, 90};
int n = arr.Length;
bubbleSort(arr,n);
Console.WriteLine("Sorted array");
printArray(arr,n);
}
}
// This code is contributed by Sam007
• PHP
<?php
// PHP Optimized implementation
// of Bubble sort
// An optimized version of Bubble Sort
function bubbleSort(&\$arr)
{
\$n = sizeof(\$arr);
// Traverse through all array elements
for(\$i = 0; \$i < \$n; \$i++)
{
\$swapped = False;
// Last i elements are already
// in place
for (\$j = 0; \$j < \$n - \$i - 1; \$j++)
{
// traverse the array from 0 to
// n-i-1. Swap if the element
// found is greater than the
// next element
if (\$arr[\$j] > \$arr[\$j+1])
{
\$t = \$arr[\$j];
\$arr[\$j] = \$arr[\$j+1];
\$arr[\$j+1] = \$t;
\$swapped = True;
}
}
// IF no two elements were swapped
// by inner loop, then break
if (\$swapped == False)
break;
}
}
// Driver code to test above
\$arr = array(64, 34, 25, 12, 22, 11, 90);
\$len = sizeof(\$arr);
bubbleSort(\$arr);
echo "Sorted array : \n";
for(\$i = 0; \$i < \$len; \$i++)
echo \$arr[\$i]." ";
// This code is contributed by ChitraNayal.
?>

Output:
Sorted array:
11 12 22 25 34 64 90
Worst and Average Case Time Complexity: O(n*n). Worst case occurs when array is reverse sorted.
Best Case Time Complexity: O(n). Best case occurs when array is already sorted.
Auxiliary Space: O(1)
Boundary Cases: Bubble sort takes minimum time (Order of n) when elements are already sorted.
Sorting In Place: Yes
Stable: Yes
Due to its simplicity, bubble sort is often used to introduce the concept of a sorting algorithm.
In computer graphics it is popular for its capability to detect a very small error (like swap of just two elements) in almost-sorted arrays and fix it with just linear complexity (2n). For example, it is used in a polygon filling algorithm, where bounding lines are sorted by their x coordinate at a specific scan line (a line parallel to x axis) and with incrementing y their order changes (two elements are swapped) only at intersections of two lines

The document Sorting Algorithms- 2 Notes | Study Algorithms - Computer Science Engineering (CSE) is a part of the Computer Science Engineering (CSE) Course Algorithms.
All you need of Computer Science Engineering (CSE) at this link: Computer Science Engineering (CSE)

## Algorithms

60 docs|33 tests
 Use Code STAYHOME200 and get INR 200 additional OFF

## Algorithms

60 docs|33 tests

### Top Courses for Computer Science Engineering (CSE)

Track your progress, build streaks, highlight & save important lessons and more!

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

;