The document Types of Vectors and Scalars - Motion in a Plane, Class 11, Physics | EduRev Notes is a part of the Class 11 Course Physics Class 11.

All you need of Class 11 at this link: Class 11

**1. Scalar**

In physics we deal with two types of physical quantity one is scalar and other is vector. Each scalar quantity has a magnitude and a unit.

**For example** mass = 4 kg

Magnitude of mass = 4

and unit of mass = kg

Example of scalar quantities: mass, speed, distance etc.

Scalar quantities can be added, subtracted and multiplied by simple laws of algebra.

Fig: Scalars and vectors

**2. Vector**

Vector are the physical quantities having magnitude as well as specified direction.

**For example:**

Speed = 4 m/s (is a scalar)

Velocity = 4 m/s toward north (is a vector)

If someone wants to reach some location then it is not sufficient to provide information about the distance of that location it is also essential to tell him about the proper direction from the initial location to the destination.

The magnitude of a vector () is the absolute value of a vector and is indicated by or A.

Example of vector quantity : Displacement, velocity, acceleration, force etc.

**Knowledge of direction: **

Fig: Specified Direction

**3. General Points Regarding Vectors**

**3.1 Representation of vector:**

Geometrically, the vector is represented by a line with an arrow indicating the direction of vector as:

Fig: Vector

Mathematically, vector is represented by .

Sometimes it is represented by bold letter **A.**

Thus, the arrow in the above figure represents a vector in xy-plane making an angle θ with x-axis.

A representation of vector will be complete if it gives us direction and magnitude.

**Symbolic form : **

**Graphical form: **A vector is represented by a directed straight line,having the magnitude and direction of the quantity represented by it.

e.g. if we want to represent a force of 5 N acting 45° N of E

(i) We choose direction coordinates.

(ii) We choose a convenient scale like 1 cm º __=__ 1 N

(iii) We draw a line of length equal in magnitude and in the direction of vector to the chosen quantity.

(iv) We put arrow in the direction of vector.

Magnitude of vector:

**3.2 Angle between two Vectors (θ):**

Angle between two vectors means smaller of the two angles between the vectors when they are placed tail to tail by displacing either of the vectors parallel to itself (i.e 0 £ q £ p).

**Ex.1 Three vectors are shown in the figure. Find angle between (i) and , (ii) and , (iii) and . **

**Ans:** To find the angle between two vectors we connect the tails of the two vectors. We can shift & such that tails of and are connected as shown in figure.

Now we can easily observe that angle between and is 60º, and is 15º and between and is 75º.

**3.3 Negative of Vector: **

It implies vector of same magnitude but opposite in direction.

**3.4 Equality of Vectors: **

Vectors having equal magnitude and same direction are called equal vectors

**3.5 Collinear vectors: **

Any two vectors are collinear then one can be expressed in the terms of others.

= (where l is a constant)

**3.6** **Co-initial vector:** If two or more vector start from the same point then they called co-initial vector.

e.g.

here A, B, C, D are co-initial.

**3.7 Coplanar vectors: **

Three (or more) vectors are called coplanar vectors if they lie in the same plane or are parallel to the same plane. Two (free) vectors are always coplanar.

**Important points:**

- A If the frame of reference is translated or rotated the vector does not change (though its components may change).

Two vectors are called equal if their magnitudes and directions are same, and they represent values of same physical quantity.

**3.8 Multiplication and division of a vector by a scalar:**

Multiplying a vector with a positive number λ gives a vector whose magnitude become λ times but the direction is the same as that of . Multiplying a vector by a negative number λ gives a vector whose direction is opposite to the direction of and whose magnitude is ^{-}λ times .

The division of vector by a non-zero scalar m is defined as multiplication of by

At here and are colinear vector

**Ex.2** **A physical quantity (m = 3 kg) is multiplied by a vector such that . Find the magnitude and direction of if **

**(i) = 3m/s ^{2} East wards **

**(ii) = -4 m/s ^{2} North wards **

**Ans:** (i) East wards

= 9 N East wards

(ii) North wards

= -12 N North wards

= 12 N South wards

128 videos|210 docs|151 tests

### Test: Motion In Two Dimensions

- Test | 5 ques | 10 min
### Fun Video: What is a Vector ?

- Video | 04:41 min
### Test: Motion In Plane - Introduction To Vectors

- Test | 10 ques | 10 min
### Addition and Subtraction of Vectors (Calculation)

- Video | 07:42 min

- Graphs
- Video | 21:02 min