Easy Way of finding the Units Digit of Large Powers | How to find the Units Digit of Large Powers| Trick to find the Unit Digits of Large Powers.
In Exam, you may find few questions based on finding the Units Digits of Large Powers. A typical example of such questions is listed below:
(a) Find the Units Place in (785)98 + (342)33 + (986)67
(b) What will come in Units Place in (983)85 - (235)37
These questions can be time consuming for those students who are unaware of the fact that there is a shortcut method for solving such questions. Don't worry if you don't know the shortcut already because we are providing it today.
Finding the Unit Digit of Powers of 2
Power | Unit Digit |
(2)1 | 2 |
(2)2 | 4 |
(2)3 | 8 |
(2)4 | 6 |
Let's solve few Examples to make things clear.
(1) Find the Units Digit in (2)33
Sol -
Step-1:: Divide the power of 2 by 4. It means, divide 33 by 4.
Step-2: You get remainder 1.
Step-3: Since you have got 1 as a remainder , put it as a power of 2 i.e (2)1.
Step-4: Have a look on table, (2)1=2. So, Answer will be 2
(2) Find the Unit Digit in (2)40
Sol -
Step-1:: Divide the power of 2 by 4. It means, divide 40 by 4.
Step-2: It's completely divisible by 4. It means, the remainder is 0.
Step-3: Since you have got nothing as a remainder , put 4 as a power of 2 i.e (2)4.
Step-4: Have a look on table, (2)4=6. So, Answer will be 6
Finding the Unit Digit of Powers of 3 (same approach)
Power | Unit Digit |
(3)1 | 3 |
(3)2 | 9 |
(3)3 | 7 |
(3)4 | 1 |
Let's solve few Examples to make things clear.
(1) Find the Units Digit in (3)33
Sol -
Step-1:: Divide the power of 3 by 4. It means, divide 33 by 4.
Step-2: You get remainder 1.
Step-3: Since you have got 1 as a remainder , put it as a power of 3 i.e (3)1.
Step-4: Have a look on table, (3)1=3. So, Answer will be 3
(2) Find the Unit Digit in (3)32
Sol -
Step-1:: Divide the power of 3 by 4. It means, divide 32 by 4.
Step-2: It's completely divisible by 4. It means, the remainder is 0.
Step-3: Since you have got nothing as a remainder , put 4 as a power of 3 i.e (3)4.
Step-4: Have a look on table, (3)4=1. So, Answer will be 1
Finding the Unit Digit of Powers of 0,1,5,6
The unit digit of 0,1,5,6 always remains same i.e 0,1,5,6 respectively for every power.
Finding the Unit Digit of Powers of 4 & 9
In case of 4 & 9, if powers are Even, the result will be 6 & 4. However, when their powers are Odd, the result will be 1 & 9. The same is depicted below.
For Example -
Finding the Unit Digit of Powers of 7 (same approach)
Power | Unit Digit |
(7)1 | 7 |
(7)2 | 9 |
(7)3 | 3 |
(7)4 | 1 |
Let's solve few Examples to make things clear.
(1) Find the Units Digit in (7)34
Sol -
Step-1:: Divide the power of 7 by 4. It means, divide 34 by 4.
Step-2: You get remainder 2.
Step-3: Since you have got 2 as a remainder , put it as a power of 7 i.e (7)2.
Step-4: Have a look on table, (7)2=9. So, Answer will be 9
(2) Find the Unit Digit in (7)84
Sol -
Step-1:: Divide the power of 7 by 4. It means, divide 84 by 4.
Step-2: It's completely divisible by 4. It means, the remainder is 0.
Step-3: Since you have got nothing as a remainder , put 4 as a power of 7 i.e (7)4.
Step-4: Have a look on table, (7)4=1. So, Answer will be 1
Finding the Unit Digit of Powers of 8 (same approach)
Power | Unit Digit |
(8)1 | 8 |
(8)2 | 4 |
(8)3 | 2 |
(8)4 | 6 |
Let's solve few Examples to make things clear.
(1) Find the Units Digit in (8)34
Sol -
Step-1:: Divide the power of 8 by 4. It means, divide 34 by 4.
Step-2: You get remainder 2.
Step-3: Since you have got 2 as a remainder , put it as a power of 8 i.e (8)2.
Step-4: Have a look on table, (8)2=4. So, Answer will be 4
(2) Find the Unit Digit in (8)32
Sol -
Step-1:: Divide the power of 8 by 4. It means, divide 32 by 4.
Step-2: It's completely divisible by 4. It means, the remainder is 0.
Step-3: Since you have got nothing as a remainder , put 4 as a power of 8 i.e (8)4.
Step-4: Have a look on table, (8)4=1. So, Answer will be 6
Now, you can easily solve questions based on finding the Unit's Digit of large powers. Lets try at least a few.
(a) Find the Units Place in (785)98 + (342)33 + (986)67
Sol : 5 + 2 + 6 = 13 . So answer will be 3 .
(a) Find the Units Place in (983)85 - (235)37
Sol : 3 - 5 = 13 - 5 = 8 . So answer will be 8 . In this question, we have considered 3 as 13 because 3-5= -2 which is negative which is not possible.
110 videos|110 docs|120 tests
|
1. How do you calculate the unit digit within seconds? |
2. What is the significance of the unit digit in calculations? |
3. Can the unit digit be zero? |
4. How can I quickly find the unit digit of large numbers? |
5. Are there any shortcuts or tricks for calculating the unit digit? |
|
Explore Courses for GMAT exam
|