CTET & State TET Exam  >  CTET & State TET Notes  >  NCERT Textbooks (Class 6 to Class 12)  >  Revision Notes - Distribution of Oceans and Continents

Distribution of Oceans and Continents Class 11 Geography

Continental Drift

  • By Alfred Wegener—a German meteorologist 1912. This was regarding the distribution of the oceans and the continents.
  • According to Wegener, all the continents formed a single continental mass and mega ocean surrounded the same.
  • The super continent was named PANGAEA, which meant all earth.
  • The mega-ocean was called PANTHALASSA, meaning all water.
  • He argued that, around 200 million years ago, the super continent, Pangaea, began to split.
  • Pangaea first broke into two large continental masses as Laurasia and Gondwanaland forming the northern and southern components respectively.
  • Subse-quently, Laurasia and Gondwanaland continued to break into various smaller continents that exist today.

 Evidence in Support of the Continental Drift

The Matching of Continents (Jig-Saw-Fit)

  • The shorelines of Africa and South America facing each other have a remarkable and unmistakable match.
  • It may be noted that a map produced using a computer programme to find the best fit of the Atlantic margin was presented by Bullard in 1964.
  • It proved to be quite perfect. The match was tried at 1,000- fathom line instead of the present shoreline.

Rocks of Same Age Across the Oceans 

  • The radiometric dating methods developed in the recent period have facilitated correlating the rock formation from different continents across the vast ocean.
  • The belt of ancient rocks of 2,000 million years from Brazil coast matches with those from western Africa.
  • The earliest marine deposits along the coastline of South America and Africa are of the Jurassic age. This suggests that the ocean did not exist prior to that time.

Tillite

  • It is the sedimentary rock formed out of   deposits of glaciers.
  • The Gondawana system of sediments from India is known to have its counter parts in six different landmasses of the Southern Hemisphere.
  • At the base the system has thick tillite indicating extensive and   prolonged glaciation.
  • Counter parts of this succession are found in Africa, Falkland Island, Madagascar, Antarctica and Australia besides India.
  • Overall resemblance of the Gondawana type sediments clearly demonstrates that these landmasses had remarkably similar histories.
  • The glacial tillite provides unambiguous evidence of palaeoclimates and also of drifting of continents.

Placer Deposits 

  • The occurrence of rich placer deposits of gold in the Ghana coast and the absolute absence of source rock in the region is an amazing fact.
  • The gold bearing veins are in Brazil and it is obvious that the gold deposits of the Ghana are derived from the Brazil plateau when the two continents lay side by side.

Distribution of Fossils 

  • When identical species of plants and animals adapted to living on land or in fresh water are found on either side of the marine barriers, a problem arises regarding accounting for such distribution.
  • The observations that Lemurs occur in India, Madagascar and Africa led some to consider a contiguous landmass “Lemuria” linking these three landmasses.
  • Mesosaurus was a small reptile adapted to shallow brackish water.
  • The skeletons of these are found only in two localities : the Southern Cape province of South Africa and Iraver formations of Brazil.
  • The two localities presently are 4,800 km apart with an ocean in between them.

Question for Revision Notes - Distribution of Oceans and Continents
Try yourself:According to the Plate Tectonic concept, how many major plates are there?
View Solution

Force for Drifting

  • Wegener suggested that the movement responsible for the drifting of the continents was caused by pole-fleeing force and tidal force.
  • The polar-fleeing force relates to the rotation of the earth.
  • the earth is not a perfect sphere; it has a bulge at the equator.
  • This bulge is due to the rotation of the earth.
  • The second force that was suggested by Wegener—the tidal force—is due to the attraction of the moon and the sun that develops tides in oceanic waters.
  • Wegener believed that these forces would become effective when applied over many million years.
  • However, most of scholars considered these forces to be totally inadequate.

Post-Drift Studies

  • It is interesting to note that for continental drift, most of the evidence was collected from the continental areas in the form of distribution of flora and fauna or deposits like tillite.
  • A number of discoveries during the post-war period added new information to geological literature.
  • Particularly, the information collected from the ocean floor mapping provided new dimensions for the study of distribution of oceans  and continents.

Convectional Current Theory

  • Arthur Holmes in 1930s discussed the possibility of convection currents operating in the mantle portion.
  • These currents are generated due to radioactive elements causing thermal differences in the mantle portion.
  • Holmes argued that there exists a system of such currents in the entire mantle portion.
  • This was an attempt to provide an explanation to the issue of force, on the basis of which contemporary scientists discarded the continental drift theory.

Mapping of the Ocean Floor

  • Detailed research of the ocean configuration that the ocean floor is not just a vast plain but it is full of relief.
  • Expeditions to map the oceanic floor in the post-war period provided a detailed picture of the ocean relief and indicated the existence of submerged mountain ranges as well as deep trenches, mostly located closer to the continent margins.
  • The mid-oceanic ridges were found to be most active in terms of volcanic eruptions.
  • The dating of the rocks from the oceanic crust revealed the fact that they are much younger than the continental areas.
  • Rocks on either side of the crest of oceanic ridges and having equi-distant locations from the crest were found to have remarkable similarities both in terms of their constituents and their age.

Ocean Floor Configuration

  • The ocean floor may be segmented into three major divisions based on the depth as well as the forms of relief.
  • These divisions are continental margins, deep-sea basins and mid-ocean ridges.

Continental Margins

  • These form the transition between continental shores and deep-sea basins.
  • They include continental shelf, continental slope, continental rise and deep-oceanic trenches.
  • the deep-oceanic trenches are the areas which are of considerable interest in so far as the distribution of oceans and continents is concerned.

Abyssal Plains

  • These are extensive plains that lie between the continental margins and mid-oceanic ridges.
  • The abyssal plains are the areas where the continental sediments that move beyond the margins get deposited.

Mid-Oceanic Ridges

  • This forms an interconnected chain of mountain system within the ocean.
  • It is the longest mountain-chain on the surface of the earth though submerged under the oceanic waters.
  • It is characterised by a central rift system at the crest, a fractionated plateau and flank zone all along its length.
  • The rift system at the crest is the zone of intense volcanic activity.

Distribution of Earthquakes and Volcanoes

  • Plate tectonics cause earthquakes and volcanoes.
  • The point where two plates meet is called a plate boundary. Earthquakes and volcanoes are most likely to occur either on or near plate boundaries.
  • The focal points of the earthquake in the areas of mid-oceanic ridges are at shallow depths whereas along the Alpine-Himalayan belt as well as the rim of the Pacific, the earthquakes are deep-seated ones.
  • The rim of the Pacific is also called rim of fire due to the existence of active volcanoes in this area.

Concept of Sea Floor Spreading

  • Seafloor spreading is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge.
  • Seafloor spreading helps explain continental drift in the theory of plate tectonics.
  • This theory was proposed by Hess in 1961. He argued that constant eruptions at the crest of oceanic ridges cause the rupture of the oceanic crust and the new lava wedges into it, pushing the oceanic crust on either side. Thus,the ocean floor spreads.
  • The younger age of the oceanic crust as well as the fact that the spreading of one ocean does not cause the shrinking of the other, made Hess think about the consumption of the oceanic crust.
  • He further maintained that the ocean floor that gets pushed due to volcanic eruptions at the crest, sinks down at the oceanic trenches and gets consumed.

Plate Tectonics

  • Plate tectonics is the theory that Earth's outer shell is divided into several plates that glide over the mantle, the rocky inner layer above the core.
  • The theory of plate tectonics was introduced by McKenzie, parker and Morgan in 1967.
  • The plates act like a hard and rigid shell compared to Earth's mantle. This strong outer layer is called the lithosphere. It is a massive irregularly shaped slab of solid rock.
  • Plates move horizontally over the Asthenosphere. Average thickness is 100 km of oceanic part and 200 km continental part.
  • Pacific plate is largest oceanic plate where as Eurasian plate is the largest continental plate.

Major Plates

  • Antarctica And Surrounding Oceanic Plate
  • North American Plate
  • South American Plate
  • Pacific Plate
  • India-Australia-New Zealand Plate
  • African Plate Eurasian Plate
  • Eurasia and the adjacent oceanic plate.

Minor Plates

  • Cocos plate: Between Central America and Pacific plate
  • Nazca plate: Between South America and Pacific plate
  • Arabian plate: Mostly the Saudi Arabian landmass
  • Philippine plate: Between the Asiatic and Pacific plate
  • Caroline plate: Between the Philippine and Indian plate (North of New Guinea)
  •  Fuji plate: North-east of Australia.

These plates are moving constantly throughout geological time not the continent believed by Wegener Pangaea was the convergent of all the plates. Position of Indian subcontinent is traced with the help of rocks analyzed from Nagpur area.

Question for Revision Notes - Distribution of Oceans and Continents
Try yourself:The boundary in the given picture shows the
Distribution of Oceans and Continents Class 11 Geography
View Solution

Types of Plate Boundaries

There are three types of plate boundaries:

1- Divergent Boundaries

  • Where new crust is generated as the plates pull away from each other.
  • The sites where the plates move away from each other are called spreading sites.
  • The best-known example of divergent boundaries is the Mid-Atlantic Ridge.
  • At this, the American Plate(s) is/are separated from the Eurasian and African Plates.

2- Convergent Boundaries

  • Where the crust is destroyed as one plate dived  under another. (Nepal quack)
  • The location where sinking of a plate occurs is called a subduction zone.
  • There are three ways in which convergence can occur.
  • These are: (i) between an oceanic and continental plate; (ii) between two oceanic plates; and (iii) between two continental plates.

3- Transform Boundaries

  • Where the crust is neither produced nor destroyed as the plates slide horizontally past each other.
  • Transform faults are the planes of separation generally perpendicular to the mid-oceanic ridges.
  • As the eruptions do not take all along the entire crest at the same time, there is a differential movement of a portion of the plate away from the axis of the earth.
  • Also, the rotation of the earth has its effect on the separated blocks of the plate portions.

Rates of Plate Movement

  • The strips of normal and reverse magnetic field    that parallel the mid-oceanic ridges help scientists determine the rates of plate movement.
  • The Arctic Ridge has the slowest rate (less than 2.5 cm/yr), and the East Pacific Rise near Easter Island, in the South Pacific about 3,400 km west of Chile, has the fastest rate (more than 15 cm/yr).

Force for the Plate  Movement

  • At the time that Wegener proposed his theory of continental drift, most scientists believed that the earth was a solid, motionless body.
  • However, concepts of sea floor spreading and the unified theory of plate tectonics have emphasized that both the surface of the earth and the interior are not static and motionless but are dynamic.
  • The mobile rock beneath the rigid plates is believed to be moving in a circular manner.
  • The heated material rises to the surface, spreads and begins to cool, and then sinks back into deeper depths.
  • This cycle is repeated over and over to generate what scientists call a convection cell or convective flow.
  • Heat within the earth comes from two main sources: radioactive decay and residual heat.
  • Arthur Holmes first considered this idea in the 1930s, which later influenced Harry Hess’ thinking about seafloor spreading. The slow movement of hot, softened mantle that lies below the rigid plates is the driving force behind the plate movement.

Movement of Indian Plate

  • The Indian plate includes Peninsular India and the Australian continental portions.
  • The subduction zone along the Himalayas forms the northern plate boundary in the form of continent— continent convergence. In the east, it extends through Rakinyoma Mountains of Myanmar towards the island arc along the Java Trench.
  • The eastern margin is a spreading site lying to the east of Australia in the form of an oceanic ridge in SW Pacific.
  • The Western margin follows Kirthar Mountain of Pakistan. It further extends along the Makrana coast and joins the spreading site from the Red Sea rift southeastward along the Chagos Archipelago.
  • The boundary between India and the Antarctic plate is also marked by oceanic ridge (divergent boundary) running in roughly W-E direction and merging into the spreading site, a little south of New Zealand.
  • India was a large island situated off the Australian coast, in a vast ocean.
  • The Tethys Sea separated it from the Asian continent till about 225 million years ago.
  • India is supposed to have started her northward journey about 200 million years ago at the time when Pangaea broke.
  • India collided with Asia about 40-50 million years ago causing rapid uplift of the Himalayas.
  • shows the position of the Indian subcontinent and the Eurasian plate.
  • About 140 million years before the present, the subcontinent was located as south as 50oS. latitude.
  • The two major plates were separated by the Tethys Sea and the Tibetan block was closer to the Asiatic landmass.
  • During the movement of the Indian plate towards the Asiatic plate, a major event that occurred was the outpouring of lava and formation of the Deccan Traps.
  • This started somewhere around 60 million years ago and continued for a long period of time.
  • the subcontinent was still close to the equator.
  • From 40 million years ago and thereafter, the event of formation of the Himalayas took place.
  • Scientists believe that the process is still continuing and the height of the Himalayas is rising even to this date.

Question for Revision Notes - Distribution of Oceans and Continents
Try yourself:The continental drift theory was propounded by
View Solution

The document Distribution of Oceans and Continents Class 11 Geography is a part of the CTET & State TET Course NCERT Textbooks (Class 6 to Class 12).
All you need of CTET & State TET at this link: CTET & State TET
3 videos|687 docs|659 tests

Top Courses for CTET & State TET

FAQs on Distribution of Oceans and Continents Class 11 Geography

1. What is continental drift?
Ans. Continental drift is a scientific theory that suggests that the Earth's continents were once joined together as a single landmass called Pangaea, and over time, they have drifted apart and moved to their current positions on the planet.
2. What evidence supports the theory of continental drift?
Ans. The evidence that supports the theory of continental drift includes the matching shapes of the continents, the distribution of fossils across continents, the similarities in rock formations, and the distribution of earthquakes and volcanoes.
3. What force drives the movement of the continents in continental drift?
Ans. The force that drives the movement of the continents in continental drift is the movement of the Earth's tectonic plates. These plates move due to convection currents in the mantle, which causes them to collide, separate, or slide past each other.
4. What are the types of plate boundaries in continental drift?
Ans. There are three types of plate boundaries in continental drift - divergent boundaries, convergent boundaries, and transform boundaries. Divergent boundaries are where two plates move away from each other, convergent boundaries are where two plates move towards each other, and transform boundaries are where two plates slide past each other.
5. How does sea floor spreading support the theory of continental drift?
Ans. Sea floor spreading is a process where new oceanic crust is formed at mid-ocean ridges and then moves away from the ridge, causing the oceanic plates to move apart. This process supports the theory of continental drift because it explains how the Earth's tectonic plates move, and how the continents have moved apart over time.
3 videos|687 docs|659 tests
Download as PDF
Explore Courses for CTET & State TET exam

Top Courses for CTET & State TET

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

pdf

,

video lectures

,

Extra Questions

,

Important questions

,

Distribution of Oceans and Continents Class 11 Geography

,

Summary

,

MCQs

,

study material

,

Objective type Questions

,

Viva Questions

,

Semester Notes

,

practice quizzes

,

shortcuts and tricks

,

Free

,

Distribution of Oceans and Continents Class 11 Geography

,

past year papers

,

Previous Year Questions with Solutions

,

Exam

,

mock tests for examination

,

ppt

,

Distribution of Oceans and Continents Class 11 Geography

;