Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Short Answer Questions: Introduction to Trigonometry

Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry

Q1: It is given that tan(θ1 + θ2) = tan θ1 + tan θ21 - tan θ1 tan θ2, where θ1 and θ2 are acute angles. Calculate θ1 + θ2 when tan θ112 and tan θ213.

Sol:  tan θ1 = 12 and tan θ2 = 13

∴ tan(θ1 + θ2) = tan θ1 + tan θ21 - tan θ1 tan θ2

= 12 + 131 - 12 × 13

= 3 + 261 - 16

= 56 ÷ 6 - 16

= 56 × 65 = 1

Now, tan (θ1 + θ2) = 1 ⇒ θ1 + θ2 = 45°.

Q2: Prove that:   tan2A - tan2B =  sin2A - sin2Bcos2A · cos2B
Sol:  LHS = tan2A - tan2B = sin2Acos2A - sin2Bcos2B

= cos2B · sin2A - sin2B · cos2Acos2A · cos2B

= sin2A · (1 - sin2B) - sin2B · (1 - sin2A)cos2A · cos2B

= sin2A - sin2A · sin2B - sin2B + sin2A · sin2Bcos2A · cos2B

using tanθ=sinθ/cosθ and cos2θ=1-sin2θ   as sin2θ+cos2θ=1
= sin2A- sin2Bcos2A.cos2B = R.H.S

Q3: Prove that:  (sin4 θ – cos4 θ +1) cosec2 θ = 2  
Sol:  L.H.S.
= (sin4 θ – cos4 θ + 1) cosec2 θ
= [(sin2 θ)2 – (cos2 θ)2 + 1] cosec2 θ             as    [a2-b2=(a-b)(a+b)]
= [(sin2 θ – cos2 θ) (sin2 θ + cos2 θ) + 1] cosec2 θ        as   [ sin2 θ + cos2 θ = 1]
= [(sin2 θ – cos2 θ) *1 + 1] cosec2 θ
= [sin2 θ – cos2 θ+1]  cosec2 θ
= [(sin2 θ + (1 –cos2 θ)] cosec2 θ   [ 1 – cos2 θ = sin2 θ]
= [sin2 θ + sin2 θ] cosec2 θ  
= 2 sin2 θ . cosec2 θ
= 2 = RHS [∵ sin θ . cosec θ = 1]

Q4: Prove that: sec2 θ + cosec2 θ = sec2 θ · cosec2 θ 

Sol: L.H.S. = sec2 θ + cosec2 θ

= 1cos2θ + 1sin2θ

= sin2θ + cos2θcos2θ · sin2θ = 1cos2θ · sin2θ

= 1cos2θ × 1sin2θ

= sec2θ × cosec2θ = R.H.S.

Q5: Prove that: 1sec x − tan x − 1cos x = 1cos x − 1sec x + tan x
Sol:  We have:

1sec x − tan x1cos x = 1cos x1sec x + tan x

Transposing the terms, we get:

1sec x − tan x + 1sec x + tan x = 1cos x + 1cos x = 2cos x

Now, L.H.S:

1sec x − tan x + 1sec x + tan x = sec x + tan x + sec x − tan x(sec x − tan x)(sec x + tan x)

= sec x + sec xsec2 x − tan2 x = 2 sec x1 [∵ sec2 x − tan2 x = 1]

= 2cos x ∴ sec x = 1cos x = R.H.S.

Q6: Show that: cos3θ + sin3θcos θ + sin θ + cos3θ − sin3θcos θ − sin θ = 2
Sol: L.H.S. =  cos3θ + sin3θcos θ + sin θ + cos3θ − sin3θcos θ − sin θ 

= (cos θ + sin θ)(cos2θ − cos θ sin θ + sin2θ)cos θ + sin θ + (cos θ − sin θ)(cos2θ + cos θ sin θ + sin2θ)cos θ − sin θ

= (cos θ + sin θ)(1 − cos θ sin θ)cos θ + sin θ + (cos θ − sin θ)(1 + cos θ sin θ)cos θ − sin θ

= (1 − cos θ sin θ) + (1 + cos θ sin θ)

= 1 − cos θ sin θ + 1 + cos θ sin θ

= 2 + 0 = 2 = R.H.S.

Q7: Prove that:  tan A + tan Bcot A + cot B = tan A × tan B

Sol: 

tan A + tan Bcot A + cot B = sin Acos A + sin Bcos Bcos Asin A + cos Bsin B

= sin A cos B + sin B cos Acos A cos B ÷ sin B cos A + sin A cos Bsin A sin B

=sin A sin Bcos A cos B

=sin Acos A × sin Bcos B = tan A × tan B = R.H.S.

Q8:  Prove that: tan2A - tan2B = sin² A - sin² Bcos² A cos² B

Sol: L.H.S = sin² Acos² A - sin² Bcos² B

= sin² A cos² B - sin² B cos² Acos² A cos² B

= sin² A (1 - sin² B) - sin² B (1 - sin² A)cos² A cos² B

= sin² A - sin² A sin² B - sin² B + sin² A sin² Bcos² A cos² B

= sin² A - sin² Bcos² A cos² B = R.H.S.

Q9:  Prove that: sin6θ + cos6θ + 3sin2θ cos2θ = 1.

Sol: ∵ sinθ + cos2θ = 1
∵ (sin2 θ + cos2 θ)3 = (1)3 = 1
⇒ (sin2 θ) 3 + (cos2 θ)3 + 3 sin2 θ . cos2 θ (sin2 θ + cos2 θ) = 1
⇒ sin6 θ + cos6 θ + 3 sin2 θ . cos2θ (1) = 1
⇒ sin6 θ + cos6 θ + 3 sin2 θ . cos2 θ = 1

Q10:  Prove that: a2 + b2 = x2 + y2 when a cos θ − b sin θ = x and a sin θ + b cos θ =y.

Sol:  R.H.S. = x² + y²

= [a cos θ - b sin θ]² + [a sin θ + b cos θ]²

= a² cos² θ + b² sin² θ - 2ab sin θ cos θ + a² sin² θ + b² cos² θ + 2ab sin θ cos θ

= a² cos² θ + b² sin² θ + a² sin² θ + b² cos² θ

= a² [cos² θ + sin² θ] + b² [sin² θ + cos² θ]

= a² [1] + b² [1]   [∵ sin² θ + cos² θ = 1]

= a² + b²

= L.H.S.

Q11: Prove that: √sec θ - 1√sec θ + 1 + √sec θ + 1√sec θ - 1 = 2 cosec θ

Sol: 

= √sec θ - 1 + √sec θ + 1√sec θ + 1 × √sec θ - 1

= (√sec θ - 1)(√sec θ - 1) + (√sec θ + 1)(√sec θ + 1)√sec θ + 1 × √sec θ - 1

= (sec θ - 1)² + (sec θ + 1)²√sec θ + 1 × √sec θ - 1

= sec θ - 1 + sec θ + 1√sec² θ - 1²

= 2 sec θ√tan² θ = 2 sec θtan θ

= 2cos θ × cos θsin θ = 2sin θ

= 2 cosec θ = R.H.S.

Q12:  Prove that: 1 + cos Asin A + sin A1 + cos A = 2 cosec A.

Sol: L.H.S. = 1 + cos Asin A + sin A1 + cos A

= (1 + cos A)(1 + cos A) + sin A × sin Asin A(1 + cos A)

= (1 + cos A)2 + (sin A)2sin A(1 + cos A)

= 1 + cos2 A + 2 cos A + sin2 Asin A(1 + cos A)

= 1 + (cos2 A + sin2 A) + 2 cos Asin A(1 + cos A)

= 2 + 2 cos Asin A(1 + cos A)

= 2(1 + cos A)sin A(1 + cos A) = 2sin A

= 2 cosec A = R.H.S.

Q13: Prove thatsin θcot θ + cosec θ = 2 + sin θcot θ - cosec θ
Sol: We have:
sin θcot θ + cosec θ = 2 + sin θcot θ - cosec θ

sin θcot θ + cosec θ - sin θcot θ - cosec θ = 2

L.H.S. = sin θcot θ + cosec θ - sin θcot θ - cosec θ

= sin θ (cot θ - cosec θ) - sin θ (cot θ + cosec θ)(cot θ + cosec θ)(cot θ - cosec θ)

= sin θ cot θ - sin θ cosec θ - sin θ cot θ - sin θ cosec θcot2 θ - cosec2 θ

= -2 sin θ cosec θ-1 | ∵ cot2 θ - cosec2 θ = -1

= 2 × sin θ1 x  1sin θ = 2

= R.H.S.

Q14: Show that1 + sec θ - tan θ1 + sec θ + tan θ = 1 - sin θcos θ
Sol: L.H.S. = (1) + sec θ - tan θ1 + sec θ + tan θ

= (sec2 θ - tan2 θ) + sec θ - tan θ1 + sec θ + tan θ  ∵ [1 - sec2 θ = tan2 θ]

= (sec θ - tan θ)(sec θ + tan θ) + (sec θ - tan θ)1 + sec θ + tan θ  ∵[ a2 - b2 = (a + b)(a - b)]

= (sec θ - tan θ)((sin θ + tan θ) + 1)sec θ + tan θ + 1

= sin θ - tan θsec θ + tan θ = 1cos θ × sin θcos θ

= 1 - sin θcos θ = R.H.S.

Q15: For an acute angle θ, show that: (sin θ − cosec θ) (cos θ − sec θ) = 1tan θ + cot θ.

Sol:  L.H.S. = (sin θ − 1sin θ) (cos θ − 1cos θ)

= (sin2 θ − 1)sin θ (cos2 θ − 1)cos θ

= −1(1 − sin2 θ) × (−1)(1 − cos2 θ)sin θ cos θ

= (−cos2 θ) × (−sin2 θ)sin θ × cos θ

= sin θ × cos θ = cos θ × sin θ1

= cos θ × sin θsin θ × cos θ = cos θ × sin θsin2 θ + cos2 θ | ∵ 1 = sin2 θ + cos2 θ

= sin θ × cos θsin θ × cos θ = 1tan θ + cot θ.

= R.H.S.

Q16:  Show that: tan A1 + sec A − tan A1 − sec A = 2 cosec A.
Sol:  L.H.S. = tan A1 + sec Atan A1 − sec A

= tan A1 + sec Atan A1 − sec A = tan A [(1 − sec A) − (1 + sec A)(1 + sec A)(1 − sec A)]

= tan A − 2 sec A(1 + sec A)(1 − sec A) =  tan A [−2 sec A1 − tan2 A]

= 2 sec Atan A = 2 1cos A × cos Asin A

= 2sin A = 2 cosec A.

= R.H.S.

Q17: If tan (A + B) = √3 and tan (A − B) = 1, 0° < A + B < 90°; A > B, then find A and B.

Sol: We have: tan (A + B) = 3 (Given)
tan 60° = 3 (From the table)
⇒ A + B = 60° ...(1)
Also, tan (A − B)= 1 [Given]
and cosec 60° = 2 and cos 90° = 0
⇒ A − B = 45 ...(2)
Adding (1) and (2),
2A = 60° + 45° = 105°

A = 105°2 = 52.5°

From (2), 52.5° − B = 45°
⇒ B = 52.5° − 45° = 7.5°
Thus, A = 52.5° and B = 7.5°.

Q18: Simplify: sin³θ + cos³θsinθ + cosθ + sinθ cosθ

Sol:  We have:

sin³θ + cos³θsinθ + cosθ + sinθ cosθ

= (sinθ + cosθ)(sin²θ + cos²θ − sinθ cosθ)(sinθ + cosθ) + sinθ cosθ

= (1 − sinθ cosθ) + sinθ cosθ

[using a³ + b³ = (a + b)(a² + b² − ab)]

= (1 − sinθ cosθ) + sinθ cosθ

= 1 − sinθ cosθ + sinθ cosθ = 1 − 0 = 1

Q19: If cot θ = 158, then evaluate: (2 + 2 sin θ)(1 − sin θ)(1 + cos θ)(2 − 2 cos θ)

Sol: 

(2 + 2 sin θ)(1 − sin θ)(1 + cos θ)(2 − 2 cos θ) = 2(1 + sin θ)(1 − sin θ)(1 + cos θ) 2(1 − cos θ)

= 2(1 − sin² θ)2(1 − cos² θ) = cos² θsin² θ

= cot² θ

Since cot θ = cos θsin θ : cot² θ = 15² = 22564

Q20: Using Geometry, find the value of sin 60°.

Sol: Let us consider an equilateral ΔABC and draw AD ⊥ BC.
Since, each angle of an equilateral triangle = 60°
∴∠A = ∠B = ∠C = 60°

Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry

Let AB = BC = AC = 2a

In ΔABD and ΔACD, we have:
AB = AC   [Given]
∠ADB = ∠ADC = 90°    [Construction]
AD = AD [Construction]
⇒ ΔABD ≅ ΔACD
⇒ BD = CD

= 12 BC = 12 × 2a = a

Now, using Pythagoras theorem, in right ΔABD,

AD2 = AB2 − BD2
= (2a)2 − a2
= 4a2 − a2
= 3a2

⇒ AD = √3a

∴ sin 60° = ADAB = √3a2a = √32

Thus, sin 60° = √32

The document Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
126 videos|457 docs|75 tests

Top Courses for Class 10

FAQs on Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry

1. What is the basic definition of trigonometry?
Ans.Trigonometry is a branch of mathematics that studies the relationships between the angles and sides of triangles, particularly right-angled triangles. It involves the use of trigonometric functions such as sine, cosine, and tangent.
2. What are the primary trigonometric ratios?
Ans.The primary trigonometric ratios are sine (sin), cosine (cos), and tangent (tan). For a right triangle, these ratios are defined as follows: - Sin(θ) = Opposite side / Hypotenuse - Cos(θ) = Adjacent side / Hypotenuse - Tan(θ) = Opposite side / Adjacent side.
3. How can trigonometry be applied in real life?
Ans.Trigonometry has numerous applications in real life, including architecture, engineering, astronomy, and navigation. For example, it is used to calculate heights and distances, design structures, and model waves and oscillations.
4. What is the Pythagorean theorem and how does it relate to trigonometry?
Ans.The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides (a² + b² = c²). This theorem is foundational in trigonometry and is used to derive the trigonometric ratios.
5. What is the unit circle and why is it important in trigonometry?
Ans.The unit circle is a circle with a radius of one, centered at the origin of a coordinate plane. It is important in trigonometry because it provides a visual representation of the trigonometric functions, allowing for easy calculation of angles and their corresponding sine, cosine, and tangent values.
126 videos|457 docs|75 tests
Download as PDF
Explore Courses for Class 10 exam

Top Courses for Class 10

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Sample Paper

,

Viva Questions

,

Free

,

shortcuts and tricks

,

Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry

,

past year papers

,

practice quizzes

,

Extra Questions

,

Exam

,

Important questions

,

mock tests for examination

,

video lectures

,

pdf

,

MCQs

,

Semester Notes

,

Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry

,

study material

,

Objective type Questions

,

Class 10 Maths Chapter 8 Question Answers - Introduction to Trigonometry

,

Summary

,

Previous Year Questions with Solutions

,

ppt

;