Table of contents | |
Percentage | |
Percentage Formula | |
Percentage Chart | |
Percentage Questions | |
Word Problems | |
Difference between Percentage and Percent |
In mathematics, a percentage is a number or ratio that can be expressed as a fraction of 100. If we have to calculate percent of a number, divide the number by the whole and multiply by 100. Hence, the percentage means, a part per hundred. The word per cent means per 100. It is represented by the symbol “%”.
Examples of percentages are:
Percentages have no dimension. Hence it is called a dimensionless number. If we say, 50% of a number, then it means 50 per cent of its whole.
Percentages can also be represented in decimal or fraction form, such as 0.6%, 0.25%, etc. In academics, the marks obtained in any subject are calculated in terms of percentage. Like, Ram has got 78% of marks in his final exam. So, this percentage is calculated on account of the total marks obtained by Ram, in all subjects to the total marks.
To calculate the percentage of a number, we need to use a different formula such as:
P% of Number = X
where X is the required percentage.
If we remove the % sign, then we need to express the above formulas as;
P/100 * Number = X
Example: Calculate 10% of 80.
Let 10% of 80 = X
10/100 * 80 = X
X = 8
If we are given with two values and we need to find the percentage difference between these two values, then it can be done using the formula:
For example, if 20 and 30 are two different values, then the percentage difference between them will be:
% difference between 20 and 30 =
The percentage increase is equal to the subtraction of the original number from a new number, divided by the original number and multiplied by 100.
% increase = [(New number – Original number)/Original number] x 100
where,
increase in number = New number – original number
Similarly, a percentage decrease is equal to the subtraction of a new number from the original number, divided by the original number and multiplied by 100.
% decrease = [(Original number – New number)/Original number] x 100
Where decrease in number = Original number – New number
So basically if the answer is negative then there is a percentage decrease.
Example: Let a bag contain 2 kg of apples and 3kg of grapes. Find the ratio of quantities present, and the percentage occupied by each.
Solution:
The number of apples and grapes in a bag can be compared in terms of their ratio, i.e. 2:3.
The actual interpretation of percentages can be understood as follows:
The same quantity can be represented in terms of the percentage occupied, which can be done as given below.
Total quantity present = 5 kg
Ratio of apples (in terms of total quantity) = 2/5
From the definition of percentage, it is the ratio that is expressed per hundred,
(1/100) = 1%
Thus, Percentage of Apples = (2/5) × 100 = 40%
Percentage of Grapes = (3/5) × 100 = 60%
The percentage chart is given here for fractions converted into percentages.
A fraction can be represented by a/b.
Multiplying and dividing the fraction by 100, we have
From the definition of percentage, we have;
(1/100) = 1%
Thus, equation (i) can be written as:
(a/b) × 100%
Therefore, a fraction can be converted to a percentage simply by multiplying the given fraction by 100.
Q1: If 16% of 40% of a number is 8, then find the number.
Solution: Let X be the required number.
Therefore, as per the given question,
(16/100) × (40/100) × X = 8
So, X = (8 × 100 × 100) / (16 × 40)
= 125
Q2: What percentage of 2/7 is 1/35 ?
Solution: Let X% of 2/7 is 1/35.
∴ [(2/7) / 100] × X = 1/35
⇒ X = (1/35) × (7/2) × 100
= 10%
Q3: Which number is 40% less than 90?
Solution: Required number = 60% of 90
= (90 x 60)/100
= 54
Therefore, the number 54 is 40% less than 90.
Q4: The sum of (16% of 24.2) and (10% of 2.42) is equal to what value?
Solution: As per the given question ,
Sum = (16% of 24.2) + (10% of 2.42)
= (24.2 × 16)/100 + (2.42 × 10)/100
= 3.872 + 0.242
= 4.114
Q1: A fruit seller had some apples. He sells 40% apples and still has 420 apples. Originally, he had how many apples?
Solution: Let he had N apples, originally.
Now, as per the given question, we have;
(100 – 40)% of N = 420
⇒ (60/100) × N = 420
⇒ N = (420 × 100/60) = 700
Q.2: Out of two numbers, 40% of the greater number is equal to 60% of the smaller. If the sum of the numbers is 150, then the greater number is?
Solution: Let X be the greater number.
∴ Smaller number = 150 – X {given that the sum of two numbers is 150}
According to the question,
(40 × X)/100 = 60(150 – X)/100
⇒ 2p = 3 × 150 – 3X
⇒ 5X = 3 × 150
⇒ X = 90
Fractions, Ratios, Percents and Decimals are interrelated with each other. Let us look at the conversion of one form to another:
Every percentage problem has three possible unknowns or variables :
In order to solve any percentage problem, you must be able to identify these variables.
Look at the following examples. All three variables are known:
Example 1: 70% of 30 is 21
Example 2: 25% of 200 is 50
Example 3: 6 is 50% of 12
To calculate the percentage, we can use the given below tricks.
x % of y = y % of x
Example: Prove that 10% of 30 is equal to 30% of 10.
Solution: 10% of 30 = 3
30% of 10 = 3
Therefore, they are equal i.e. x % of y = y % of x holds true.
Students get marks in exams, usually out of 100. The marks are calculated in terms of per cent. If a student has scored out of total marks, then we have to divide the scored marks by total marks and multiply by 100. Let us see some examples here:
57 videos|108 docs|73 tests
|
1. What is the formula to calculate percentage? |
2. How do you convert a percentage into a decimal? |
3. What are some common applications of percentages in daily life? |
4. What is the difference between percentage and percent? |
5. How can I solve percentage word problems effectively? |
|
Explore Courses for CLAT exam
|