भूकंपीय तरंगों का अध्ययन स्तरित इंटीरियर की पूरी तस्वीर प्रदान करता है। पृथ्वी के झटकों में सरल शब्दों में भूकंप। यह एक प्राकृतिक घटना है। यह ऊर्जा की रिहाई के कारण होता है, जो सभी दिशाओं में तरंगों को उत्पन्न करता है।
पृथ्वी क्यों हिलती है?
ऊर्जा की रिहाई एक गलती के साथ होती है। एक गलती क्रस्टल चट्टानों में एक तेज ब्रेक है। एक गलती के साथ चट्टानें विपरीत दिशाओं में चलती हैं। जैसे-जैसे ओवर रॉकिंग स्टैटा उन्हें दबाती है, घर्षण उन्हें एक साथ बंद कर देता है। हालांकि, किसी समय अलग होने की उनकी प्रवृत्ति घर्षण पर काबू पाती है। नतीजतन, ब्लॉक विकृत हो जाते हैं और अंततः, वे एक दूसरे को अचानक से स्लाइड करते हैं। यह ऊर्जा की रिहाई का कारण बनता है, और ऊर्जा तरंगें सभी दिशाओं में यात्रा करती हैं। जिस बिंदु पर ऊर्जा को छोड़ा जाता है उसे वैकल्पिक रूप से भूकंप का फोकस कहा जाता है। विभिन्न दिशाओं में यात्रा करने वाली ऊर्जा तरंगें सतह तक पहुंचती हैं। सतह पर स्थित बिंदु, फोकस के निकटतम, को उपकेंद्र कहा जाता है। यह तरंगों का अनुभव करने वाला पहला है। यह सीधे फोकस से ऊपर का बिंदु है।
भूकंप तरंगें
सभी प्राकृतिक भूकंप स्थलमंडल में आते हैं। यहाँ यह ध्यान रखना पर्याप्त है कि स्थलमंडल पृथ्वी की सतह से 200 किमी तक की गहराई के हिस्से को संदर्भित करता है।
'सीस्मोग्राफ' नामक एक उपकरण सतह तक पहुंचने वाली तरंगों को रिकॉर्ड करता है। ध्यान दें कि वक्र तीन अलग-अलग वर्गों को दिखाता है जो विभिन्न प्रकार के तरंग पैटर्न का प्रतिनिधित्व करते हैं। भूकंप की तरंगें मूल रूप से दो प्रकार की होती हैं- शरीर की तरंगें और सतह की तरंगें। शरीर की तरंगें पृथ्वी पर शरीर के माध्यम से यात्रा करने वाली सभी दिशाओं में ध्यान केंद्रित करने और ऊर्जा के प्रवाह के कारण उत्पन्न होती हैं। इसलिए, नाम शरीर तरंगों। शरीर की लहरें सतह की चट्टानों के साथ संपर्क करती हैं और सतह तरंगों नामक तरंगों के नए सेट उत्पन्न करती हैं। ये तरंगें सतह के साथ चलती हैं। तरंगों के वेग में परिवर्तन होता है क्योंकि वे विभिन्न घनत्व वाले पदार्थों के माध्यम से यात्रा करते हैं। सघन पदार्थ, उच्चतर वेग है। विभिन्न घनत्वों के साथ सामग्रियों के पार आते ही उनकी दिशा बदल जाती है।
शरीर की तरंगें दो प्रकार की होती हैं। उन्हें पी और एस-लहर कहा जाता है। पी-वेव तेजी से चलते हैं और सतह पर सबसे पहले आते हैं। इन्हें 'प्राथमिक तरंगें' भी कहा जाता है। पी-तरंगें ध्वनि तरंगों के समान हैं। वे गैसीय, तरल और ठोस पदार्थों के माध्यम से यात्रा करते हैं। एस-लहरें सतह पर कुछ समय अंतराल के साथ पहुंचती हैं।
इन्हें द्वितीयक तरंगें कहते हैं। एस-वेव्स के बारे में एक महत्वपूर्ण तथ्य यह है कि वे केवल ठोस पदार्थों के माध्यम से यात्रा कर सकते हैं। एस-वेव्स की यह विशेषता काफी महत्वपूर्ण है।
इसने वैज्ञानिकों को पृथ्वी के इंटीरियर की संरचना को समझने में मदद की है। प्रतिबिंब तरंगों का कारण बनता है, जबकि अपवर्तन तरंगें अलग-अलग दिशाओं में चलती हैं। तरंगों की दिशा में भिन्नता सीस्मोग्राफ पर उनके रिकॉर्ड की मदद से अनुमान लगाया गया है। सतह की तरंगें सीस्मोग्राफ पर रिपोर्ट करने के लिए अंतिम हैं। ये तरंगें अधिक विनाशकारी होती हैं। वे चट्टानों के विस्थापन का कारण बनते हैं, और इसलिए, संरचनाओं का पतन होता है।
भूकंप तरंगों का प्रसार
विभिन्न प्रकार की भूकंप तरंगें अलग-अलग शिष्टाचार में यात्रा करती हैं। जैसा कि वे चलते हैं या प्रचार करते हैं, वे चट्टानों के शरीर में कंपन का कारण बनते हैं जिसके माध्यम से वे गुजरते हैं। P- तरंगें तरंग की दिशा के समानांतर कंपन करती हैं।
यह प्रसार की दिशा में सामग्री पर दबाव डालती है। नतीजतन, यह सामग्री में खिंचाव और निचोड़ के लिए सामग्री में घनत्व अंतर पैदा करता है। अन्य तीन तरंगें प्रसार की दिशा में लंबवत कंपन करती हैं। एस-तरंगों के कंपन की दिशा ऊर्ध्वाधर विमान में तरंग की दिशा के लंबवत है। इसलिए, वे उस सामग्री में गर्त और गड्ढों का निर्माण करते हैं जिसके माध्यम से वे गुजरते हैं। सतह की लहरों को सबसे अधिक नुकसानदायक लहरें माना जाता है।
छाया क्षेत्र का उद्भव
भूकंप की तरंगें दूर के स्थानों पर स्थित भूकम्पों में दर्ज की जाती हैं।
हालांकि, कुछ विशिष्ट क्षेत्र मौजूद हैं जहां लहरों की सूचना नहीं है। ऐसे ज़ोन को 'शैडो ज़ोन' कहा जाता है। विभिन्न घटनाओं के अध्ययन से पता चलता है कि प्रत्येक भूकंप के लिए, पूरी तरह से अलग छाया क्षेत्र मौजूद है।
यह देखा गया कि उपरिकेंद्र से 105 the के भीतर किसी भी दूरी पर स्थित सीस्मोग्राफ ने पी और एस-वेव दोनों के आगमन को दर्ज किया। हालांकि, उपरिकेंद्र से 145º से आगे स्थित भूकंपवाद, पी-तरंगों के आगमन को रिकॉर्ड करते हैं, लेकिन एस-तरंगों के नहीं। इस प्रकार, भूकंप से 105º और 145º के बीच के क्षेत्र को दोनों प्रकार की तरंगों के लिए छाया क्षेत्र के रूप में पहचाना गया। 105 entire से अधिक पूरे क्षेत्र में S-waves नहीं मिलती है। S-wave का शैडो ज़ोन P-waves की तुलना में बहुत बड़ा है। 105 के बीच पृथ्वी के चारों ओर एक बैंड के रूप पी लहरों प्रकट होता है की छाया क्षेत्र º और 145 º उपरिकेंद्र से दूर। एस-वेव्स का छाया क्षेत्र न केवल हद से ज्यादा बड़ा है, बल्कि यह पृथ्वी की सतह का 40 प्रतिशत से थोड़ा अधिक है।
भूकंप
की माप भूकंप की घटनाओं को या तो आघात या तीव्रता के अनुसार बढ़ाया जाता है। परिमाण पैमाने को रिक्टर स्केल के रूप में जाना जाता है। भूकंप भूकंप के दौरान जारी ऊर्जा से संबंधित है। परिमाण पूर्ण संख्या में व्यक्त किया गया है, 0-10। तीव्रता के पैमाने का नाम मर्काली के नाम पर रखा गया है, जो एक इतालवी भूकम्पविज्ञानी है। तीव्रता पैमाने पर घटना के कारण दिखाई देने वाली क्षति को ध्यान में रखा जाता है। तीव्रता पैमाने की सीमा 1-12 से है।
हालांकि वास्तविक भूकंप की गतिविधि कुछ सेकंड तक चलती है, इसके प्रभाव विनाशकारी होते हैं बशर्ते कि भूकंप की तीव्रता रिक्टर पैमाने पर 5 से अधिक हो।
क्रस्ट
यह पृथ्वी का सबसे बाहरी ठोस हिस्सा है। यह प्रकृति में भंगुर है। पपड़ी की मोटाई समुद्री और महाद्वीपीय क्षेत्रों के तहत भिन्न होती है। महाद्वीपीय क्रस्ट की तुलना में महासागरीय पपड़ी पतली होती है। समुद्री पपड़ी की औसत मोटाई 5 किमी है जबकि महाद्वीपीय 30 किमी के आसपास है। महाद्वीपीय क्रस्ट प्रमुख पर्वत प्रणालियों के क्षेत्रों में मोटा है। यह हिमालयी क्षेत्र में 70 किमी मोटी है। यह 3 जी / सेमी 3 के घनत्व वाली भारी चट्टानों से बना है । समुद्री क्रस्ट में पाई जाने वाली इस प्रकार की चट्टान बेसाल्ट है। समुद्री क्रस्ट में सामग्री का औसत घनत्व 2.7 ग्राम / सेमी 3 है ।
द मेटल
क्रस्ट से परे इंटीरियर का हिस्सा मेंटल कहलाता है। यह मोहनो के संपर्क से 2,900 किमी की गहराई तक फैला हुआ है। मेंटल के ऊपरी हिस्से को एस्थेनोस्फीयर कहा जाता है। अस्टेनो शब्द का अर्थ है कमजोर। इसे 400 किमी तक विस्तारित माना जाता है। यह मैग्मा का मुख्य स्रोत है जो ज्वालामुखी विस्फोट के दौरान सतह पर अपना रास्ता खोजता है। इसका क्रस्ट की तुलना में घनत्व अधिक है (3.4 ग्राम / सेमी 3 )। क्रस्ट और मेंटल के ऊपर वाले भाग को लिथोस्फीयर कहा जाता है। इसकी मोटाई 10-200 किमी तक है। निचला मेन्थेन एस्फेनोस्फीयर से परे तक फैला हुआ है। यह ठोस अवस्था में है।
कोर
जैसा कि पहले संकेत दिया गया था, भूकंप की लहर वेग ने पृथ्वी के कोर के अस्तित्व को समझने में मदद की। कोर मेंटल सीमा 2,900 किमी की गहराई पर स्थित है। बाहरी कोर तरल अवस्था में है जबकि आंतरिक कोर ठोस अवस्था में है। मेंटल कोर बाउंड्री पर सामग्री का अवतरण लगभग 5 g / cm 3 और पृथ्वी के केंद्र में 6,300 किमी है। घनत्व मान लगभग 13 ग्राम / सेमी 3 है । कोर बहुत भारी सामग्री से बना है जो ज्यादातर निकल और लोहे द्वारा गठित है। इसे कभी-कभी चाकू की परत के रूप में जाना जाता है।
ज्वालामुखी और ज्वालामुखी की भूमि
ज्वालामुखी एक ऐसी जगह है जहाँ गैस, राख और / या पिघली हुई शिला पदार्थ- लावा- जमीन में जाती है। एक ज्वालामुखी को एक सक्रिय ज्वालामुखी कहा जाता है यदि हाल ही में बताई गई सामग्री को जारी किया गया हो या जारी किया गया हो। ठोस क्रस्ट के नीचे की परत मेंटल है। यह क्रस्ट की तुलना में उच्च घनत्व है। मेंटल में एक कमजोर क्षेत्र होता है जिसे एस्थेनोस्फीयर कहा जाता है। यह इस बात से है कि पिघली हुई चट्टान सामग्री सतह पर अपना रास्ता खोज लेती है। ऊपरी मेंटल हिस्से की सामग्री को मैग्मा कहा जाता है। एक बार जब यह क्रस्ट की ओर बढ़ने लगता है या सतह पर पहुंच जाता है, तो इसे लावा कहा जाता है। जमीन तक पहुंचने वाली सामग्री में लावा प्रवाह, पाइरोक्लास्टिक मलबे, ज्वालामुखी बम, राख और धूल और गैसें जैसे नाइट्रोजन यौगिक, सल्फर यौगिक और मामूली मात्रा में क्लोरीन, हाइड्रोजन और आर्गन शामिल हैं।
ज्वालामुखी ज्वालामुखी को विस्फोट की प्रकृति और सतह पर विकसित रूप के आधार पर वर्गीकृत किया गया है। ज्वालामुखी के प्रमुख प्रकार इस प्रकार हैं:
शील्ड ज्वालामुखी
बेसाल्ट बहती है, ढाल ज्वालामुखी पृथ्वी पर सभी ज्वालामुखियों में से सबसे बड़ा है, हवाईयन ज्वालामुखी सबसे प्रसिद्ध उदाहरण हैं। ये ज्वालामुखी ज्यादातर बेसाल्ट से बने होते हैं, एक प्रकार का लावा जो फूटने पर बहुत तरल होता है। इस कारण से, ये ज्वालामुखी खड़ी नहीं हैं। वे विस्फोटक हो जाते हैं अगर किसी तरह पानी वेंट में जाता है; अन्यथा, उन्हें कम-विस्फोटकता की विशेषता होती है। आगामी लावा एक फव्वारे के रूप में चलता है और शंकु को वेंट के शीर्ष पर फेंक देता है और सिंडर शंकु में विकसित होता है।
समग्र ज्वालामुखी
ये ज्वालामुखी बेसाल्ट की तुलना में कूलर और मोकरे चिपचिपा लवण के विस्फोट की विशेषता है। इन ज्वालामुखियों में अक्सर विस्फोटक विस्फोट होते हैं। लावा के साथ, बड़ी मात्रा में पाइरोक्लास्टिक सामग्री और राख जमीन पर अपना रास्ता तलाशते हैं। यह सामग्री परतों के गठन के लिए अग्रणी वेंट उद्घाटन के आसपास के क्षेत्र में जमा होती है, और इससे माउंट समग्र ज्वालामुखी के रूप में दिखाई देते हैं।
काल्डेरा
ये पृथ्वी के ज्वालामुखियों के सबसे विस्फोटक हैं। वे आम तौर पर इतने विस्फोटक होते हैं कि जब वे फट जाते हैं तो वे किसी भी लंबे ढांचे के निर्माण के बजाय खुद पर गिर जाते हैं। ढह चुके अवसादों को कैल्डर कहा जाता है। उनकी विस्फोटकता इंगित करती है कि लावा की आपूर्ति करने वाला मैग्मा कक्ष न केवल विशाल है, बल्कि इसके आस-पास के क्षेत्र में भी है।
बाढ़ बेसाल्ट प्रांत
इन ज्वालामुखियों से अत्यधिक द्रव लावा निकलता है जो लंबी दूरी के लिए बहता है। दुनिया के कुछ हिस्सों को हजारों वर्ग किमी द्वारा कवर किया गया है। मोटी बेसाल्ट लावा का प्रवाह। 50 मीटर से अधिक की मोटाई वाले कुछ प्रवाह के साथ प्रवाह की एक श्रृंखला हो सकती है। व्यक्तिगत प्रवाह सैकड़ों किमी तक फैल सकता है। भारत का दक्कन ट्रैप, जो वर्तमान में महाराष्ट्र के अधिकांश पठार को कवर करता है, एक बहुत बड़ा बाढ़ बेसाल्ट प्रांत है। यह माना जाता है कि शुरू में जाल संरचनाओं में वर्तमान की तुलना में बहुत बड़ा क्षेत्र शामिल था। मिड-ओशन रिज ज्वालामुखी: ये ज्वालामुखी समुद्री क्षेत्रों में होते हैं। 70,000 किमी से अधिक लंबे मिडोकैन लकीरें की एक प्रणाली है जो सभी महासागर घाटियों के माध्यम से फैलती है। इस रिज के मध्य भाग में बार-बार विस्फोट का अनुभव होता है।
घुसपैठ के रूप: शीतलन पर ज्वालामुखी विस्फोट के दौरान निकलने वाला लावा आग्नेय चट्टानों में विकसित होता है। शीतलन या तो सतह पर पहुंचने पर हो सकता है या लावा अभी भी क्रस्टल हिस्से में हो सकता है। लावा के ठंडा होने के स्थान के आधार पर, आग्नेय चट्टानों को ज्वालामुखी चट्टानों (सतह पर ठंडा) और प्लूटोनिक चट्टानों (क्रस्ट में ठंडा) के रूप में वर्गीकृत किया जाता है। क्रस्टल भागों के भीतर ठंडा होने वाला लावा विभिन्न रूपों को मानता है। इन रूपों को घुसपैठ के रूप कहा जाता है।
बाथोलिथ्स: मैग्मेटिक सामग्री का एक बड़ा शरीर जो क्रस्ट की गहराई में ठंडा होता है, बड़े गुंबदों के रूप में विकसित होता है। वे सतह पर केवल तब दिखाई देते हैं जब अनुदैर्ध्य प्रक्रियाएं अतिव्यापी सामग्री को हटा देती हैं। वे बड़े क्षेत्रों को कवर करते हैं, और कई बार, यह मान लेते हैं कि गहराई कई किमी हो सकती है। ये दानेदार शरीर हैं। बाथोलिथ मैग्मा कक्षों का ठंडा हिस्सा है।
लैकोलिथ्स: ये बड़े डोमेस्पेड होते हैं जो एक स्तर के आधार के साथ घुसपैठ करते हैं और नीचे से पाइप जैसी नाली द्वारा जुड़े होते हैं। यह समग्र ज्वालामुखी के सतह ज्वालामुखी गुंबदों से मिलता जुलता है, केवल ये ही अधिक गहराई पर स्थित हैं। इसे लावा का स्थानीयकृत स्रोत माना जा सकता है जो सतह पर अपना रास्ता खोज लेता है। कर्नाटक पठार को ग्रेनाइट चट्टानों के गुंबददार पहाड़ियों के साथ देखा जाता है। इनमें से अधिकांश, अब बहिष्कृत, लैकोलिथ या बाथोलिथ के उदाहरण हैं।
लापोलिथ, फोलिथ और सील्स
जैसे ही और जब लावा ऊपर की ओर बढ़ता है, उसी का एक हिस्सा क्षैतिज दिशा में आगे बढ़ता है जहां भी यह कमजोर विमान पाता है। यह अलग-अलग रूपों में आराम कर सकता है। मामले में यह एक तश्तरी के आकार में विकसित होता है, आकाश शरीर के लिए अवतल होता है, इसे लैपोलिथ कहा जाता है। घुसपैठ चट्टानों का एक लहराती द्रव्यमान, कई बार, सिनक्लाइन के आधार पर या मुड़ा हुआ आग्नेय देश में एंटीकलाइन के शीर्ष पर पाया जाता है। इस तरह के लहराती सामग्री में मैग्मा कक्षों (बाद में बाथोलिथ के रूप में विकसित) के रूप में स्रोत के नीचे एक निश्चित नाली होती है। इन्हें फोलिथ कहा जाता है। निकटवर्ती आग्नेय चट्टानों के क्षैतिज निकायों को सामग्री की मोटाई के आधार पर सेल या शीट कहा जाता है। पतले लोगों को शीट कहा जाता है जबकि मोटी क्षैतिज जमाओं को मिल कहा जाता है।
डाइक्स: जब लावा दरार के माध्यम से अपना रास्ता बनाता है और जमीन में विकसित दरारें, यह जमीन के लगभग लंबवत हो जाता है। यह दीवार जैसी संरचना को विकसित करने के लिए उसी स्थिति में ठंडा हो जाता है। ऐसी संरचनाओं को डाइक्स कहा जाता है। ये पश्चिमी महाराष्ट्र क्षेत्र में सबसे अधिक पाए जाने वाले घुसपैठ के रूप हैं। इन विस्फोटों के लिए फीडर माना जाता है जिसके कारण डेक्कन जाल का विकास हुआ।
55 videos|460 docs|193 tests
|
55 videos|460 docs|193 tests
|
|
Explore Courses for UPSC exam
|