JEE Exam  >  JEE Notes  >  Mathematics (Maths) Class 12  >  NCERT Exemplar - Matrices(Part-1)

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE PDF Download

Q.1. If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
Ans.
The possible orders that a matrix having 28 elements are {28 × 1, 1 × 28, 2 × 14, 14 × 2, 4 × 7, 7 × 4}. The possible orders of a matrix having 13 elements are {1 × 13, 13 × 1}.

Q.2. In the matrix A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE write:
(i) The order of the matrix A 
(ii) The number of elements 
(iii) Write elements  a23, a31, a12
Ans.
(i) The order of the given matrix A is 3 × 3
(ii) The number of elements in matrix A = 3 × 3 = 9
(iii) aij = the elements of ith row and jth column.
So, a23 = x2 – y, a31 = 0, a12 = 1.

Q.3. Construct a2 × 2 matrix where

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(ii) aij = |−2i + 3j|
Ans.
Let
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(i) Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, the matrix A =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(ii) Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, the matrix A =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.4. Construct a 3 × 2 matrix whose elements are given by aij = eixsinjx

Ans. Let
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Given that aij = eix sin jx
a11 = ex sin x    a12 = esin 2x
a21 = e2x sin x   a22 = e2x sin 2x
a31 = e3x sin x    a32 = e3x sin 2x
Hence, the matrix
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.5. Find values of a and b if A = B, where
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEENCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Given that A = B
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get
a + 4 = 2a + 2, 3b = b2 + 2 and b2 – 5b = – 6
⇒ 2a - a = 2, b2 - 3b + 2 = 0, b2 - 5b + 6 = 0
∴ a = 2
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
but here 2 is common.
Hence, the value of a = 2 and b = 2.

Q.6. If possible, find the sum of the matrices A and B, where A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE and B =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
The order of matrix A = 2 × 2 and the order of matrix B = 2 × 3 Addition of matrices is only possible when they have same order. So, A + B is not possible.

Q.7. IfNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEfind
(i) X +Y 
(ii) 2X – 3Y 
(iii) A matrix Z such that X + Y + Z is a zero matrix.
Ans.
Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(i) X + Y  =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(ii) 2X – 3Y =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(iii) X + Y + Z = 0
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get
5 + a = 0 ⇒ a = – 5, 2 + b = 0 ⇒ b = – 2, – 2 + c = 0 ⇒ c = 2
12 + d = 0 ⇒ d = – 12, e = 0, 1 + f = 0 ⇒ f = – 1
Hence, the matrix,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.8. Find non-zero values of x satisfying the matrix equation:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
The given equation can be written as
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements we get
12x = 48, 3x + 8 = 20, x2 + 8x = 12x
∴ x = 48/12 = 4, 3x = 20 – 8 = 12, ⇒ x2 = 12x – 8x = 4x
∴ x = 4, ⇒ x2 – 4x = 0 x = 0, x = 4
Hence, the non-zero values of x is 4.

Q.9. If NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEshow that (A + B) (A – B) ≠ A2 – B2.
Ans.
Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
A + B =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
⇒ A + B =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
∴ (A + B) × (A - B) =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Now, R.H.S. = A2 – B2 
= A × A - B × B
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, (A + B) . (A – B) ≠ A2 - B2

Q.10. Find the value of x if
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Given that,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEENCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

⇒ [2x + 16 + 10x + 12 + x2 + 4x] = 0;  ⇒ x2 + 16x + 28 = 0
⇒ x2 + 14x + 2x + 28 = 0; ⇒ x(x + 14) + 2(x + 14) = 0
⇒ (x + 2) (x + 14) = 0;  x + 2 = 0 or x + 14 = 0
∴ x = – 2 or x = – 14
Hence, the values of x are – 2 and – 14.

Q.11. Show thatNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEsatisfies the equation A2 – 3A – 7I = O and hence find A–1.
Ans.
Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
A2 = A × A
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
A2 – 3A – 7I = O
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
We are given A2 – 3A – 7I = O
⇒ A–1 [A2 – 3A – 7I] = A–1O
[Pre-multiplying both sides by A–1]
⇒ A–1A × A – 3A–1 × A – 7A–1 I = O [A–1O = O]
⇒ I × A – 3I – 7A–1 I  = O
⇒ A – 3I – 7A–1  = O
⇒ –7A–1 = 3I – A
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.12. Find the matrix A satisfying the matrix equation:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
LetNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get,
– 6a – 3c + 10b + 5d = 1 ...(1)
–9a – 6c + 15b + 10d = 0 ...(2)
4a + 2c – 6b – 3d = 0 ...(3)
6a + 4c – 9b – 6d = 1 ...(4)
Multiplying eq. (1) by 2 and subtracting eq. (2), we get,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
– 3a + 5b = 2 ...(5)
Now, multiplying eq. (3) by 2 and subtracting eq. (4), we get
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
2a – 3b = – 1 ...(6)
Solving eq. (5) and (6) i.e.,
– 3a + 5b = 2
2a – 3b = – 1
2 x (- 3a + 5b = 2) ⇒ 6a + 10b = 4
3 x (2a - 3b = -1) ⇒ 6a - 9b = - 3
Adding b = 1
Putting the value of b in eq. (6), we get,
2a – 3 x 1 = - 1
⇒ 2a - 3 = - 1 ⇒ 2a = 3 - 1 ⇒ 2a = 2
∴ a = 1
Now, putting the values of a and b in equations (1) and (3)
–6 x 1 - 3c + 10 x 1 + 5d = 1
⇒ - 6 - 3c + 10 + 5d = 1
⇒ – 3c + 5d + 4 = 1 ⇒ 3c + 5d = - 3 ...(7)
and from eq. (3)
4 x 1 + 2c - 6 x 1 - 3d = 0; ⇒  4 + 2c - 6 - 3d = 0
⇒ - 2 + 2c - 3d = 0 ⇒ 2c - 3d = 2 ...(8)
Solving eq. (7) and (8) we get,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEENCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Adding  
Putting the value of d in eq. (8) we get,
2c – 3 x 0 = 2 ⇒ 2c= 2 ⇒ c = 1
Hence,NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.13. Find A, if
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Order ofNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEis 3 × 1 and order ofNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEis 3 x 3. So, the  order of matrix A must be 1 x 3.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements to get the values of a, b and c
4a = – 4, 4b = 8, 4c = 4
∴ a = – 1 ∴ b = 2 ∴ c = 1
Hence, matrix A = [- 1  2  1]

Q.14. If A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEand B =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen verify (BA)2 ≠ B2A2
Ans.
Here,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Here, number of columns of first i.e., 3 is not equal to the number of rows of second matrix i.e., 2.
So, B2 is not possible. Similarly, A2 is also not possible.
Hence, (BA)2 ≠ B2A2

Q.15. If possible, find BA and AB, where
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.16. Show by an example that for  A ≠ O, B ≠ O, AB = O.
Ans.
Let
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.17. Given NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEIs (AB)′ = B′A′?

Ans.
Here,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.

Q.18. Solve for x and y:

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Comparing the corresponding elements of both sides, we get,
2x + 3y – 8 = 0 ⇒ 2x + 3y = 8 ...(1)
x + 5y – 11 = 0 ⇒ x + 5y = 11 ...(2)
Multiplying eq. (1) by 1 and eq. (2) by 2, and then on subtracting, we get,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
∴ y = 2
Putting y = 2 in eq. (2) we get,
x + 5 x 2 = 11 ⇒ x + 10 = 11
∴ x = 11 – 10 = 1
Hence, the values of x and y are 1 and 2 respectively.

Q.19. If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Multiplying eq. (1) by 3 and eq. (2) by 2, we get,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
On subtracting eq. (4) from eq. (3) we get
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Now, putting the value of Y in equation (1) we get,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.20. If A = [3 5],  B = [7 3], then find a non-zero matrix C such that AC = BC.
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Let,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
AC = BC (Given)
⇒ [3α + 5β] = [7α + 3β]
⇒ 3α + 5β = 7α + 3β
⇒ 3α – 7α = 3β – 5β
⇒ – 4α = – 2β
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
So, let α = K and β = 2K, K is some real number.
Hence, matrix C =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.21. Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
Ans.
Let,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, AB = AC for matrix A is non-zero and B ≠ C.

Q.22. If

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(i) (AB) C = A (BC)   
(ii) A (B + C) = AB + AC.
Ans.
Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(i) To verify: (AB)C = A(BC)
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.
So, (AB)C = A(BC)
(ii) To verify: A(B + C) = AB + AC
L.H.S. B + CNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S.A(B + C) NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. ABNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
ACNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. AB + AC
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.
Hence, A(B + C) = AB + AC

Q.23. If

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Now
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, PQ = QP.

Q.24. If :NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEfind A.
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, matrix A = [– 4]

Q.25. If A = [ 2   1] ,  B =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEverify that A (B + C) = (AB + AC).
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.
Hence, A(B + C) = (AB + AC) is verified.

Q.26. If NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen verify that A2 + A  = A (A + I), where I is 3 × 3 unit matrix.
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
A2 = A × A
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. A2 + A =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. A(A + I) =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.
A2 + A = A(A + I). Hence verified.

Q.27. If NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen verify  that :
(i) (A′)′ = A
(ii) (AB)′ = B′A′
(iii) (kA)′ = (kA′).

Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(i)
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(ii) L.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEENCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. = R.H.S.
Hence,(AB)′ = B′A′is verified.
(iii) L.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEENCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(kA)′ = (kA′) is verified.

Q.28. If NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen  verify that:
(i) (2A + B)′ = 2A′ + B′
(ii) (A – B)′ = A′ – B′.

Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(i) To verify that:(2A + B)′ = 2A′ + B′
L.H.S. (2A + B)′ =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. 2A′ + B′ =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(2A + B)′ = 2A′ + B′is verified.
(ii) To verify that:(A – B)′ = A′ – B′.
L.H.S. (A – B)′ =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S.A′ – B′=
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(A – B)′ = A′ – B′ is verified.

Q.29. Show that A′A and AA′ are both symmetric matrices for any matrix A.
Ans.
Let P = A′A
⇒ P′ = (A′A)′
⇒ P′ = A′(A′)′ [(AB)′ = B′A′]
⇒ P′ = A′A [∵ (A′)′ = A]
⇒ P′ = P
Hence, A¢A is a symmetric matrix.
Now, Let Q = AA′
⇒ Q′ = (AA′)′
⇒ Q′ = (A′)′ A′ [(AB)′ = B′A′]
⇒ Q′ = AA′ [∵ (A′)′ = A]
⇒ Q′ = Q
Hence, AA′ is also a symmetric matrix.

Q.30. Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2 ? Give reasons.
Ans.
Given that A and B are the matrices of the order 3 x 3.
(AB)2 = AB × AB
= AA × BB
= A2 × B2
Hence, (AB)2 = A2B2

Q.31. how that if A and B are square matrices such that AB = BA, then 
(A + B)2 = A2 + 2AB + B2.
Ans.
To prove that (A + B)2 = A2 + 2AB + B2 
L.H.S. (A + B)2 = (A + B) × (A + B) [∵ A2 = A × A]
= A × A + AB + BA + B × B
= A2 + AB + AB + B2 [AB = BA]
= A2 + 2AB + B2 R.H.S.
So, L.H.S. = R.H.S.

Q.32. Let NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEand a = 4, b = –2.
Show that: 
(a) A + (B + C) = (A + B) + C 
(b) A (BC) = (AB) C
(c) (a + b)B = aB + bB 
(d) a (C–A) = aC – aA 
(e) (AT)= A 
(f) (bA)T = b AT 
(g) (AB)T = BT AT 
(h) (A –B)C = AC – BC 
(i) (A – B)T = AT – BT
Ans.
(a) To prove that: A + (B + C) = (A + B) + C
L.H.S. A + (B + C) =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. (A + B) + C
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
A + (B + C) = (A + B) + C Hence proved.
(b) To prove that: A(BC) = (AB)C
L.H.S. A(BC) =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. (AB)C
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
A(BC) = (AB)C Hence proved.
(c) To prove that: (a + b)B = aB + bB
Here, a  = 4  and b = – 2
L.H.S. (a + b)B =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. aB + bB
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(a + b)B = aB + bB Hence proved.
(d) To prove that: a(C – A) =  aC – aA
L.H.S. a(C – A) =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. aC – aA =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
a(C – A) = aC – aA Hence proved.
(e) To prove that: (AT)T = A
L.H.S.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEER.H.S.
Hence, (AT)T = A
(f) To prove that: (bA)T = bAT
L.H.S. (bA)T =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. bAT =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(bA)T = bAT Hence proved.
(g) To prove that: (AB)T = BTAT
L.H.S. (AB)T
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. BTAT=
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(AB)T = BTAHence proved.
(h) To prove that: (A – B)C = AC – BC
L.H.S. (A – B)C =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. AC – BC =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(A – B)C = AC – BC
(i) To prove that: (A – B)T = AT – BT
L.H.S. (A – B)T =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S. AT – BT =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(A – B)T = AT – BT Hence proved.

Q.33. If A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen show that A2 =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans. Given that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
A = A . A=NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence proved.

Q.34. If A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE and x2 = –1, then show that (A + B)2 = A2 + B2.
Ans. Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. (A + B)2 = (A + B) × (A + B)
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Put x2 = –1 (given)
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R.H.S.
A2 + B2 = A ×  A + B × B
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, L.H.S. = R.H.S.
(A + B)2 = A2 + B2

Q.35. Verify that A2 = I when A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans. Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
L.H.S. A2 = A × A =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, A2 = I is verified.

Q.36. Prove by Mathematical Induction that (A′)″ = (A″)′, where n ∈ N for any square matrix A.

Ans.
To prove that (A′)″ = (A″)′
Let P (n): (A′)″ = (A″)′
Step 1: Put n = 1, P(1): A′ = A′ which is true for n = 1
Step 2: Put n = K, P(K): (A′)K = (AK)′ Let  it be true for n = K
Step 3: Put n = K + 1, P(K + 1): (A′)K + 1 = (AK + 1)′
L.H.S. (A′)K + 1 = (A′)K × (A′)
= (AK)′ × (A′) (From step 2)
= (AK × A)′
= (AK+1)′ R.H.S.
The given statement is true for P(K+1) whenever it is true for P(K), where K ∈ N.

Q.37. Find inverse, by elementary row operations (if possible), of the following matrices
(i)NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(ii)NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
(i) Let
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
|A| = 1 x 7 - (- 5) x 3 = 7 + 15 = 22 ≠ 0
So, A is invertible.
Let A = IA
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R2 → R2 + 5R1
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
R1 → R1 - 3R2
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE=NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
SoNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, inverse of NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
(ii) Let
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
|A| = 1 x 6 - (- 3) (- 2) = 6 - 6 = 0
|A| = 0 so A is not invertible.
Hence, inverse ofNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEis not possible.

Q.38. IfNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen find values of x, y, z and w.
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements,
xy = 8, w = 4, z + 6 = 0 ⇒ z = – 6, x + y = 6
Now, solving x + y = 6 ...(i)
and xy = 8 ...(ii)
From eqn. (i), y = 6 – x ...(iii)
Putting the value of y in eqn. (ii) we get,
x(6 – x) = 8 ⇒ 6x – x2 = 8
⇒ x2 – 6x + 8 = 0 ⇒ x2 – 4x – 2x + 8 = 0
⇒ x(x – 4) – 2(x – 4) = 0 ⇒ (x - 4) (x - 2) = 0
∴ x = 4, 2
From eqn. (iii), y = 2, 4.
Hence, x = 4 or  2, y = 2 or 4, z = – 6 and w = 4.

Q.39. IfNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEfind a matrix C such that 3A + 5B + 2C is a null matrix.
Ans.
Order of matrices A and B is 2 × 2.
∴ Order of matrix C must be 2 × 2.
LetNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
∴ 3A + 5B + 2C = 0
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get,
48 + 2a = 0 ⇒ 2a = - 48 ⇒ a = - 24
20 + 2b = 0 ⇒ 2b = - 20 ⇒ b = - 10
56 + 2c = 0 ⇒ 2c = - 56 ⇒ c = - 28
76 + 2d = 0 ⇒ 2d = - 76 ⇒ d = - 38
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.40. If  A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen find A2 – 5A – 14I. Hence, obtain A3.
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
A2 = A . A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
∴ A2 – 5A – 14INCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, A2 – 5A – 14I = O
Now, multiplying both sides by A, we get,
A2 . A – 5A . A – 14IA = OA
⇒ A3 – 5A2 – 14A = 0
⇒ A3 = 5A2 + 14A
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, A=NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.41. Find the values of a, b, c and d, if
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Given that:NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get,
3a = a + 4 ⇒ 3a – a = 4 ⇒ 2a = 4 ⇒ a = 2
3b = 6 + a + b ⇒ 3b – b – a = 6 ⇒ 2b – a = 6 ⇒ 2b – 2 = 6
⇒ 2b = 8
⇒ b = 4 3c = – 1 + c + d
⇒ 3c – c – d = – 1 ⇒ 2c – d = – 1
and 3d = 2d + 3 ⇒ 3d – 2d = 3 ⇒ d = 3
Now 2c – d = – 1
⇒ 2c – 3 = – 1 ⇒ 2c = 3 - 1 ⇒ 2c = 2
∴ c = 1
∴ a = 2, b = 4, c = 1 and d = 3.

Q.42. Find the matrix A such that
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Ans.
Order of matrix NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEis 3 × 2 and the matrix
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEis 3 × 3
∴ Order of matrix A must be 2 × 3
Let A =
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
So,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get,
2a – d = – 1 and a = 1 ⇒ 2 × 1 – d = – 1 ⇒ d = 2 + 1 ⇒ d = 3
2b – e = – 8 and b = – 2 ⇒ 2(– 2) – e =  – 8 ⇒ – 4 – e = – 8
⇒ e = 4
2c – f = – 10 and c = – 5 ⇒ 2(– 5)  – f = – 10 ⇒ – 10 – f = – 10
⇒ f = 0
a = 1, b = – 2, c = – 5, d = 3, e = 4 and f = 0
Hence,
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.43. If A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEfind A2 + 2A + 7I.

Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, A+ 2A + 7I =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

Q.44. If A =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEand A –1 = A′ , find value of α.
Ans.
Here,
A=NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Given that: A– 1 = A′
Pre-multiplying both sides by
AA– 1 = AA′
⇒ I = AA′ [∵ AA-1 = I]
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Hence, it is true for all values of α.

Q.45. If the matrixNCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE is a skew symmetric matrix, find the values of a, b and c.
Ans.
Let,  
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
For skew symmetric matrix, A′ = - A.
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
Equating the corresponding elements, we get
 a = – 2, b = – b ⇒ 2b = 0 ⇒ b = 0 and c = - 3
Hence, a = - 2,  b = 0 and c = - 3.

Q.46. If P (x) =NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEEthen show that 
P(x) . P(y) = P(x + y) = P(y) . P(x).
Ans.
Given that:
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE[Replacing x by y]
P(x).P(y)
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
P(x + y)
Now
P(y).P(x)
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE 
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE
= P(x + y)
Hence, P(x).P(y) = P(x + y) = P(y).P(x).

Q.47. If A is square matrix such that A2 = A, show that (I + A)3 = 7A + I.
Ans.
To show that: (I + A)3 = 7A + I
L.H.S. (I + A)3 = I3 + A3 + 3I2A + 3IA2
⇒ I + A2.A + 3IA + 3IA2
⇒ I + A.A + 3IA + 3IA [∵ A2 = A]
⇒ I + A2 + 3IA + 3IA
⇒ I + A + 3IA + 3IA [∵ A2 = A]
⇒ I + A + 3A + 3A  ⇒ 7A + I  R.H.S.
L.H.S. = R.H.S. Hence, Proved.

Q.48. If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew symmetric.
Ans.
Given that B is a skew symmetric matrix
∴ B′ = - B
Let P = A′BA
⇒ P′ = (A′BA)′
= A′B′(A′)′ [(AB)′ = B′A′]
= A′(- B) A
= – A′BA = - P
So P′ = – P
Hence, A′BA is a skew symmetric matrix.

The document NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE is a part of the JEE Course Mathematics (Maths) Class 12.
All you need of JEE at this link: JEE
204 videos|290 docs|139 tests

Top Courses for JEE

FAQs on NCERT Exemplar - Matrices(Part-1) - Mathematics (Maths) Class 12 - JEE

1. What are matrices and how are they used in mathematics?
A matrix is a rectangular array of numbers, symbols, or expressions arranged in rows and columns. Matrices are widely used in various branches of mathematics, such as linear algebra, calculus, and statistics. They are used to represent and solve systems of linear equations, perform transformations, and analyze data in a structured manner.
2. How do you perform addition and subtraction of matrices?
To add or subtract matrices, you need to ensure that they have the same dimensions. Add or subtract corresponding elements of the matrices to obtain the resulting matrix. For example, to add two matrices A and B, add the elements in the first row of A with the elements in the first row of B, and so on. The resulting matrix will have the same dimensions as the original matrices.
3. Can matrices be multiplied? If yes, how is matrix multiplication performed?
Yes, matrices can be multiplied under certain conditions. Matrix multiplication involves multiplying corresponding elements of rows from the first matrix with corresponding elements of columns from the second matrix, and summing up the products. The resulting matrix will have dimensions equal to the number of rows of the first matrix and the number of columns of the second matrix.
4. What is the identity matrix and how is it used in matrix operations?
The identity matrix is a square matrix with ones on the main diagonal and zeros elsewhere. It is denoted by the symbol "I". When a matrix is multiplied by the identity matrix, the original matrix remains unchanged. The identity matrix serves as the multiplicative identity for matrices, similar to how the number 1 serves as the multiplicative identity for real numbers.
5. Can matrices be inverted? If yes, how do you find the inverse of a matrix?
Not all matrices can be inverted, but for those that can, the inverse matrix is useful in solving systems of linear equations and performing other mathematical operations. To find the inverse of a matrix, you need to ensure that the matrix is square and its determinant is non-zero. The inverse matrix is obtained by performing a series of operations called row operations, and the resulting matrix is the identity matrix.
204 videos|290 docs|139 tests
Download as PDF
Explore Courses for JEE exam

Top Courses for JEE

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

Viva Questions

,

past year papers

,

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

,

ppt

,

Previous Year Questions with Solutions

,

Summary

,

video lectures

,

Extra Questions

,

practice quizzes

,

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

,

shortcuts and tricks

,

MCQs

,

Semester Notes

,

Exam

,

study material

,

pdf

,

Objective type Questions

,

NCERT Exemplar - Matrices(Part-1) | Mathematics (Maths) Class 12 - JEE

,

Sample Paper

,

mock tests for examination

,

Free

,

Important questions

;