Sorting Algorithms- 2 | Algorithms - Computer Science Engineering (CSE) PDF Download

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.

Example: 
First Pass: 
( 5 1 4 2 8 ) –> ( 1 5 4 2 8 ), Here, algorithm compares the first two elements, and swaps since 5 > 1.
( 1 5 4 2 8 ) –>  ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) –>  ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 ), Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass: 
( 1 4 2 5 8 ) –> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) –> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –>  ( 1 2 4 5 8 )
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one whole pass without any swap to know it is sorted.
Third Pass: 
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) –> ( 1 2 4 5 8 )

Following is the implementations of Bubble Sort.

  • C++
    // C++ program for implementation of Bubble sort
    #include <bits/stdc++.h>
    using namespace std;
    void swap(int *xp, int *yp)
    {
        int temp = *xp;
        *xp = *yp;
        *yp = temp;
    }
    // A function to implement bubble sort
    void bubbleSort(int arr[], int n)
    {
        int i, j;
        for (i = 0; i < n-1; i++)
        // Last i elements are already in place
        for (j = 0; j < n-i-1; j++)
            if (arr[j] > arr[j+1])
                swap(&arr[j], &arr[j+1]);
    }
    /* Function to print an array */
    void printArray(int arr[], int size)
    {
        int i;
        for (i = 0; i < size; i++)
            cout << arr[i] << " ";
        cout << endl;
    }
    // Driver code
    int main()
    {
        int arr[] = {64, 34, 25, 12, 22, 11, 90};
        int n = sizeof(arr)/sizeof(arr[0]);
        bubbleSort(arr, n);
        cout<<"Sorted array: \n";
        printArray(arr, n);
        return 0;
    }
    // This code is contributed by rathbhupendra
  • C
    // C program for implementation of Bubble sort
    #include <stdio.h>
    void swap(int *xp, int *yp)
    {
        int temp = *xp;
        *xp = *yp;
        *yp = temp;
    }
    // A function to implement bubble sort
    void bubbleSort(int arr[], int n)
    {
       int i, j;
       for (i = 0; i < n-1; i++)
           // Last i elements are already in place
           for (j = 0; j < n-i-1; j++)
               if (arr[j] > arr[j+1])
                  swap(&arr[j], &arr[j+1]);
    }
    /* Function to print an array */
    void printArray(int arr[], int size)
    {
        int i;
        for (i=0; i < size; i++)
            printf("%d ", arr[i]);
        printf("\n");
    }
    // Driver program to test above functions
    int main()
    {
        int arr[] = {64, 34, 25, 12, 22, 11, 90};
        int n = sizeof(arr)/sizeof(arr[0]);
        bubbleSort(arr, n);
        printf("Sorted array: \n");
        printArray(arr, n);
        return 0;
    }
  • Java
    // Java program for implementation of Bubble Sort
    class BubbleSort
    {
        void bubbleSort(int arr[])
        {
            int n = arr.length;
            for (int i = 0; i < n-1; i++)
                for (int j = 0; j < n-i-1; j++)
                    if (arr[j] > arr[j+1])
                    {
                        // swap arr[j+1] and arr[j]
                        int temp = arr[j];
                        arr[j] = arr[j+1];
                        arr[j+1] = temp;
                    }
        }
        /* Prints the array */
        void printArray(int arr[])
        {
            int n = arr.length;
            for (int i=0; i<n; ++i)
                System.out.print(arr[i] + " ");
            System.out.println();
        }
        // Driver method to test above
    public static void main(String args[])
        {
            BubbleSort ob = new BubbleSort();
            int arr[] = {64, 34, 25, 12, 22, 11, 90};
            ob.bubbleSort(arr);
            System.out.println("Sorted array");
            ob.printArray(arr);
        }
    }
    /* This code is contributed by Rajat Mishra */
  • Python
    # Python program for implementation of Bubble Sort
    def bubbleSort(arr):
        n = len(arr)
        # Traverse through all array elements
        for i in range(n):
            # Last i elements are already in place
            for j in range(0, n-i-1):
                # traverse the array from 0 to n-i-1
                # Swap if the element found is greater
                # than the next element
                if arr[j] > arr[j+1] :
                    arr[j], arr[j+1] = arr[j+1], arr[j]
    # Driver code to test above
    arr = [64, 34, 25, 12, 22, 11, 90]
    bubbleSort(arr)
    print ("Sorted array is:")
    for i in range(len(arr)):
        print ("%d" %arr[i]),
  • C#
    // C# program for implementation
    // of Bubble Sort
    using System;
    class GFG
    {
        static void bubbleSort(int []arr)
        {
            int n = arr.Length;
            for (int i = 0; i < n - 1; i++)
                for (int j = 0; j < n - i - 1; j++)
                    if (arr[j] > arr[j + 1])
                    {
                        // swap temp and arr[i]
                        int temp = arr[j];
                        arr[j] = arr[j + 1];
                        arr[j + 1] = temp;
                    }
        }
        /* Prints the array */
        static void printArray(int []arr)
        {
            int n = arr.Length;
            for (int i = 0; i < n; ++i)
                Console.Write(arr[i] + " ");
            Console.WriteLine();
        }
        // Driver method
        public static void Main()
        {
            int []arr = {64, 34, 25, 12, 22, 11, 90};
            bubbleSort(arr);
            Console.WriteLine("Sorted array");
            printArray(arr);
        }
    }
    // This code is contributed by Sam007
  • PHP
    <?php
    // PHP program for implementation
    // of Bubble Sort
    function bubbleSort(&$arr)
    {
        $n = sizeof($arr);
        // Traverse through all array elements
        for($i = 0; $i < $n; $i++)
        {
            // Last i elements are already in place
            for ($j = 0; $j < $n - $i - 1; $j++)
            {
                // traverse the array from 0 to n-i-1
                // Swap if the element found is greater
                // than the next element
                if ($arr[$j] > $arr[$j+1])
                {
                    $t = $arr[$j];
                    $arr[$j] = $arr[$j+1];
                    $arr[$j+1] = $t;
                }
            }
        }
    }
    // Driver code to test above
    $arr = array(64, 34, 25, 12, 22, 11, 90);
    $len = sizeof($arr);
    bubbleSort($arr);
    echo "Sorted array : \n";
    for ($i = 0; $i < $len; $i++)
        echo $arr[$i]." ";
    // This code is contributed by ChitraNayal.
    ?>
  • Javascript
    <script>
    function swap(arr, xp, yp)
    {
        var temp = arr[xp];
        arr[xp] = arr[yp];
        arr[yp] = temp;
    }
    // An optimized version of Bubble Sort
    function bubbleSort( arr, n)
    {
    var i, j;
    for (i = 0; i < n-1; i++)
    {
        for (j = 0; j < n-i-1; j++)
        {
            if (arr[j] > arr[j+1])
            {
            swap(arr,j,j+1);
            }
        }
    }
    }
    /* Function to print an array */
    function printArray(arr, size)
    {
        var i;
        for (i=0; i < size; i++)
            document.write(arr[i]+ " ");
        document.write("\n");
    }
    // Driver program to test above functions
      var arr = [64, 34, 25, 12, 22, 11, 90];
        var n = 7;
        document.write("UnSorted array: \n");
        printArray(arr, n);
        bubbleSort(arr, n);
        document.write("Sorted array: \n");
        printArray(arr, n);
    </script>

Output:
Sorted array:
11 12 22 25 34 64 90
<!—-Illustration:
Sorting Algorithms- 2 | Algorithms - Computer Science Engineering (CSE) —>
Optimized Implementation: 
The above function always runs O(n^2) time even if the array is sorted. It can be optimized by stopping the algorithm if inner loop didn’t cause any swap.

  • CPP
    // Optimized implementation of Bubble sort
    #include <stdio.h>
    void swap(int *xp, int *yp)
    {
        int temp = *xp;
        *xp = *yp;
        *yp = temp;
    }
    // An optimized version of Bubble Sort
    void bubbleSort(int arr[], int n)
    {
       int i, j;
       bool swapped;
       for (i = 0; i < n-1; i++)
       {
         swapped = false;
         for (j = 0; j < n-i-1; j++)
         {
            if (arr[j] > arr[j+1])
            {
               swap(&arr[j], &arr[j+1]);
               swapped = true;
            }
           }
         // IF no two elements were swapped by inner loop, then break
         if (swapped == false)
            break;
       }
    }
    /* Function to print an array */
    void printArray(int arr[], int size)
    {
        int i;
        for (i=0; i < size; i++)
            printf("%d ", arr[i]);
        printf("n");
    }
    // Driver program to test above functions
    int main()
    {
        int arr[] = {64, 34, 25, 12, 22, 11, 90};
        int n = sizeof(arr)/sizeof(arr[0]);
        bubbleSort(arr, n);
        printf("Sorted array: \n");
        printArray(arr, n);
        return 0;
    }
  • Java
    // Optimized java implementation
    // of Bubble sort
    import java.io.*;
    class GFG
    {
        // An optimized version of Bubble Sort
        static void bubbleSort(int arr[], int n)
        {
            int i, j, temp;
            boolean swapped;
            for (i = 0; i < n - 1; i++)
            {
                swapped = false;
                for (j = 0; j < n - i - 1; j++)
                {
                    if (arr[j] > arr[j + 1])
                    {
                        // swap arr[j] and arr[j+1]
                        temp = arr[j];
                        arr[j] = arr[j + 1];
                        arr[j + 1] = temp;
                        swapped = true;
                    }
                }
                // IF no two elements were
                // swapped by inner loop, then break
                if (swapped == false)
                    break;
            }
        }
        // Function to print an array
        static void printArray(int arr[], int size)
        {
            int i;
            for (i = 0; i < size; i++)
                System.out.print(arr[i] + " ");
            System.out.println();
        }
        // Driver program
        public static void main(String args[])
        {
            int arr[] = { 64, 34, 25, 12, 22, 11, 90 };
            int n = arr.length;
            bubbleSort(arr, n);
            System.out.println("Sorted array: ");
            printArray(arr, n);
        }
    }
    // This code is contributed
    // by Nikita Tiwari.
  • Python3
    # Python3 Optimized implementation
    # of Bubble sort
    # An optimized version of Bubble Sort
    def bubbleSort(arr):
        n = len(arr)
        # Traverse through all array elements
        for i in range(n):
            swapped = False
            # Last i elements are already
            #  in place
            for j in range(0, n-i-1):
                # traverse the array from 0 to
                # n-i-1. Swap if the element
                # found is greater than the
                # next element
                if arr[j] > arr[j+1] :
                    arr[j], arr[j+1] = arr[j+1], arr[j]
                    swapped = True
            # IF no two elements were swapped
            # by inner loop, then break
            if swapped == False:
                break
    # Driver code to test above
    arr = [64, 34, 25, 12, 22, 11, 90]
    bubbleSort(arr)
    print ("Sorted array :")
    for i in range(len(arr)):
        print ("%d" %arr[i],end=" ")
    # This code is contributed by Shreyanshi Arun
  • C#
    // Optimized C# implementation
    // of Bubble sort
    using System;
    class GFG
    {
        // An optimized version of Bubble Sort
        static void bubbleSort(int []arr, int n)
        {
            int i, j, temp;
            bool swapped;
            for (i = 0; i < n - 1; i++)
            {
                swapped = false;
                for (j = 0; j < n - i - 1; j++)
                {
                    if (arr[j] > arr[j + 1])
                    {
                        // swap arr[j] and arr[j+1]
                        temp = arr[j];
                        arr[j] = arr[j + 1];
                        arr[j + 1] = temp;
                        swapped = true;
                    }
                }
                // IF no two elements were
                // swapped by inner loop, then break
                if (swapped == false)
                    break;
            }
        }
        // Function to print an array
        static void printArray(int []arr, int size)
        {
            int i;
            for (i = 0; i < size; i++)
                Console.Write(arr[i] + " ");
            Console.WriteLine();
        }
        // Driver method
        public static void Main()
        {
            int []arr = {64, 34, 25, 12, 22, 11, 90};
            int n = arr.Length;
            bubbleSort(arr,n);
            Console.WriteLine("Sorted array");
            printArray(arr,n);
        }
    }
    // This code is contributed by Sam007
  • PHP
    <?php
    // PHP Optimized implementation
    // of Bubble sort
    // An optimized version of Bubble Sort
    function bubbleSort(&$arr)
    {
        $n = sizeof($arr);
        // Traverse through all array elements
        for($i = 0; $i < $n; $i++)
        {
            $swapped = False;
            // Last i elements are already
            // in place
            for ($j = 0; $j < $n - $i - 1; $j++)
            {
                // traverse the array from 0 to
                // n-i-1. Swap if the element
                // found is greater than the
                // next element
                if ($arr[$j] > $arr[$j+1])
                {
                    $t = $arr[$j];
                    $arr[$j] = $arr[$j+1];
                    $arr[$j+1] = $t;
                    $swapped = True;
                }
            }
            // IF no two elements were swapped
            // by inner loop, then break
            if ($swapped == False)
                break;
        }
    }
    // Driver code to test above
    $arr = array(64, 34, 25, 12, 22, 11, 90);
    $len = sizeof($arr);
    bubbleSort($arr);
    echo "Sorted array : \n";
    for($i = 0; $i < $len; $i++)
        echo $arr[$i]." ";
    // This code is contributed by ChitraNayal.
    ?>

Output:
Sorted array:
11 12 22 25 34 64 90
Worst and Average Case Time Complexity: O(n*n). Worst case occurs when array is reverse sorted.
Best Case Time Complexity: O(n). Best case occurs when array is already sorted.
Auxiliary Space: O(1)
Boundary Cases: Bubble sort takes minimum time (Order of n) when elements are already sorted.
Sorting In Place: Yes
Stable: Yes
Due to its simplicity, bubble sort is often used to introduce the concept of a sorting algorithm.
In computer graphics it is popular for its capability to detect a very small error (like swap of just two elements) in almost-sorted arrays and fix it with just linear complexity (2n). For example, it is used in a polygon filling algorithm, where bounding lines are sorted by their x coordinate at a specific scan line (a line parallel to x axis) and with incrementing y their order changes (two elements are swapped) only at intersections of two lines

The document Sorting Algorithms- 2 | Algorithms - Computer Science Engineering (CSE) is a part of the Computer Science Engineering (CSE) Course Algorithms.
All you need of Computer Science Engineering (CSE) at this link: Computer Science Engineering (CSE)
81 videos|80 docs|33 tests

Top Courses for Computer Science Engineering (CSE)

FAQs on Sorting Algorithms- 2 - Algorithms - Computer Science Engineering (CSE)

1. What is bubble sort and how does it work?
Ans. Bubble sort is a simple sorting algorithm that repeatedly steps through the list, compares adjacent elements, and swaps them if they are in the wrong order. This process is repeated until the list is sorted in ascending order.
2. What is the time complexity of bubble sort?
Ans. The time complexity of bubble sort is O(n^2), where n is the number of elements in the list. This means that the time taken to sort the list increases quadratically with the number of elements.
3. Is bubble sort an efficient sorting algorithm?
Ans. No, bubble sort is not considered an efficient sorting algorithm. It performs well for small lists or nearly sorted lists, but its time complexity makes it inefficient for large lists. There are other sorting algorithms, such as merge sort or quicksort, that have better time complexity and are more efficient.
4. Can bubble sort be used for sorting in descending order?
Ans. Yes, bubble sort can be easily modified to sort in descending order. Instead of swapping elements if they are in the wrong order, we can swap them if they are in the right order. This will result in the largest elements "bubbling" to the beginning of the list, hence sorting it in descending order.
5. Are there any advantages of using bubble sort?
Ans. Although bubble sort is not the most efficient sorting algorithm, it has some advantages in certain scenarios. It is easy to understand and implement, making it a good choice for educational purposes or for sorting small lists. Additionally, bubble sort is a stable sorting algorithm, meaning it preserves the relative order of elements with equal values, which can be useful in specific cases.
81 videos|80 docs|33 tests
Download as PDF
Explore Courses for Computer Science Engineering (CSE) exam

Top Courses for Computer Science Engineering (CSE)

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

shortcuts and tricks

,

Summary

,

past year papers

,

Free

,

Important questions

,

ppt

,

study material

,

Previous Year Questions with Solutions

,

pdf

,

mock tests for examination

,

Sorting Algorithms- 2 | Algorithms - Computer Science Engineering (CSE)

,

Semester Notes

,

Sorting Algorithms- 2 | Algorithms - Computer Science Engineering (CSE)

,

practice quizzes

,

Viva Questions

,

Sorting Algorithms- 2 | Algorithms - Computer Science Engineering (CSE)

,

MCQs

,

Objective type Questions

,

Extra Questions

,

Exam

,

video lectures

,

Sample Paper

;