Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Practice Questions: Introduction to Trigonometry

Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry

Q1. If sec θ + tan θ = 7, then evaluate sec θ – tan θ.

Sol:

We know that,

sec2θ – tan2θ = 1

⇒ (sec θ + tan θ) (sec θ – tan θ) = 1

⇒  (7) (sec θ – tan θ) = 1 …[sec θ + tan θ = 7]

∴ sec θ – tan θ = 1/7


Q2. Prove that
(1+tan A - sec A) (1+tan A + sec A) = 2 tan A

Sol:

LHS = (1+tan A)2 - sec2 A

= 1+ tan2 A + 2 tan A - sec2 A

= sec2 A + 2 tan A - sec2 A

= 2 tan A = RHS


Q3. If tan A = cot B, then find the value of (A+B)

Sol:

We have,

tan A = cot B

tan A = tan(90°-B)

A = 90° - B

Thus, A + B = 90°


Q4. If sinθ + sin2θ = 1 then prove that cos2θ + cos4θ = 1.

Sol:

sinθ + sin2θ = 1

⇒ sinθ + (1-cos2θ) = 1

⇒ sinθ - cos2θ = 0

⇒ sinθ = cos2θ

Squaring both sides, we get

sin2θ = cos4θ

⇒ 1 - cos2θ = cos4θ

⇒ cos4θ + cos2θ = 1


Q5. If tan θ + cot θ = 5, find the value of tan2θ + cotθ.

Sol:

tan θ + cot θ = 5 …[Given]

⇒ tan2θ + cot2θ + 2 tan θ cot θ = 25 …[Squaring both sides]

⇒ tan2θ + cot2θ + 2 = 25

∴ tan2θ + cot2θ = 23


6. If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A.

Sol:

sec 2A = cosec (A – 27°)

⇒ cosec(90° – 2A) = cosec(A – 27°) …[∵ sec θ = cosec (90° – θ)]

⇒ 90° – 2A = A – 27°

⇒ 90° + 27° = 2A + A

⇒ 3A = 117°

∴ ∠A = 117°/3 = 39°


Q7. Evaluate: sin2 19° + sin271°.

Sol:

sin219° + sin271°

= sin219° + sin2 (90° – 19°) …[∵ sin(90° – θ) = cos θ]

= sin2 19° + cos2 19° = 1 …[∵ sin2 θ + cos2 θ = 1]


Q8. In a triangle ABC, write cos(B+C/2) in terms of angle A.

Sol:

In a triangle,

A+B+C = 180°

B+C = 180° - A

Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry


Q9. If secθ sinθ = 0, then find the value of θ.

Sol:

We have,

secθ sinθ = 0

Thus θ = 0

Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry


Q10. Find the value of sin241° + sin249°

Sol:

sin241° + sin249°

= sin2(90°-49°) + sin249°

= cos249° + sin249°

= 1


Q11. If tan A = cot B, prove that A + B = 90°.

Sol:

tan A = cot B

∴ tan A = tan (90° − B)

⇒ A = 90° − B

⇒ A + B = 90°


Q12. Express sin 67° + cos 75° in terms of ratios of angles between 0° and 45°.
Sol:

∵ 67° = 90° − 23° and 75° = 90° − 15° 

∴ sin 67° + cos 75°

= sin (90° − 23°) + cos (90° − 15°)

= cos 23° + sin 15°


Q13. What is the value of sinθ. cos(90° - θ) + cosθ . sin(90° - θ)?

Sol:

sinθ ·cos(90° − θ) + cosθ · sin(90° − θ)

= sinθ · sinθ + cosθ · cosθ [∵ cos(90° − θ) = sinθ , sin(90° − θ) = cos θ]

= sin2 θ + cos2 θ

= 1


Q14. If tan θ = cot (30° + θ ), find the value of θ .

Sol:

We have,

tan θ = cot (30° + θ)

= tan [90° − (30° + θ)]

= tan [90° − 30° − θ]

= tan (60° − θ)

⇒ θ = 60° − θ

⇒ θ + θ = 60°

⇒ 2θ = 60°

⇒ θ = 60°/2

⇒ θ = 30°

Q15. If sin 3θ = cos (θ - 6)° and 3θ and (θ - 6)° are acute angles, find the value of θ.

Sol:

We have,

sin3θ = cos(θ − 6)° = sin[90°−(θ − 6)°] ∵ [sin (90° − θ) = cos θ]

⇒ 3θ = 90° − (θ − 6)°

⇒ 3θ = 90° − θ + 6°

⇒ 3θ + θ = 96°

⇒ 4θ = 96°/4

⇒ θ = 24°


Q16. Show that: tan 10° tan 15° tan 75° tan 80° = 1

Sol:

We have,

L.H.S. = tan 10° tan 15° tan 75° tan 80°

= tan (90° − 80°) tan 15° tan (90° − 15°) tan 80°

= cot 80° tan 15 cot 15° tan 80°

= (cot 80° × tan 80°) × (tan 15° × cot 15°)

= 1× 1

= 1 = R.H.S.

Introduction to Trigonometry Class 10 Maths Important Questions Short Answer-I (2 Marks)

17. If tan 2A = cot (A - 18°), where 2A is an acute angle, find the value of A.

Sol:

tan 2A = cot (A - 18°)

⇒ cot (90° - 2A) = cot (A - 18°) [∵ cot (90° -0) - tan θ]

⇒ 90° - 2A = A - 18°

⇒ 3A = 108°

⇒ A = 108°/3

⇒ A = 36°

The document Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
Are you preparing for Class 10 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 10 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
127 videos|551 docs|75 tests

Up next

127 videos|551 docs|75 tests
Download as PDF

Up next

Explore Courses for Class 10 exam
Related Searches

Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry

,

ppt

,

Extra Questions

,

Sample Paper

,

Summary

,

shortcuts and tricks

,

Previous Year Questions with Solutions

,

Semester Notes

,

mock tests for examination

,

video lectures

,

Free

,

Viva Questions

,

Important questions

,

Objective type Questions

,

pdf

,

study material

,

Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry

,

Exam

,

practice quizzes

,

past year papers

,

MCQs

,

Class 10 Maths Chapter 8 Practice Question Answers - Introduction to Trigonometry

;