Class 10 Exam  >  Class 10 Notes  >  Mathematics (Maths) Class 10  >  Practice Questions: Circles

Class 10 Maths Chapter 10 Practice Question Answers - Circles

Q1. If the angle between two radii of a circle is 100º , the angle between the tangents at the ends of those radii is:
(a) 50º
(b) 60º
(c) 80º
(d) 90º

Ans: (c)
Sol:
From the figure, it is evident that ∠AOB=100º .
Now, ∠OAP=90º   and ∠OBP=90º  (radii is perpendicular to tangent at point of contact)
Also, sum of interior angles  of a quadrilateral is 360º  and hence,
∠APB=360º  −∠OAP−∠OBP−∠AOB=80º
This is the required angle between the tangents.


Q2. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm

Ans: (b)
Sol:
Two concentric circles have the centre as O.
AB is a chord of the outer circle and AB touches the inner circle at T.
OA=OB=5cmandAB=8cm.
To find out −
The radius of the inner circle i.e OT=?

Solution−
AB touches the inner circle at T.
So the line OT from the centre O to Tis perpendicular to AB at T.
i.e ∠OTA = 90º =∠OTB.....(i)
∴ Between ΔOTA & ΔOTB we have
OA = OB = 5 cm (given)
∠OTA =∠OTB=90º  (from i)
∴ ΔOTA & ΔOTB are congruent by SAS test.
⟹AT=BT or AT= 1/2 ×AB
⟹AT= 1/2  × 8cm=4cm.
Now in ΔOTA we have ∠OTA=90º
 i.e ΔOTA is right angled at T with OA as hypotenuse.
∴ Applying Pythagoras theorem, we have,

Class 10 Maths Chapter 10 Practice Question Answers - Circles
So the radius of the inner circle 3cm.


Q3. Radius of a circle with centre 'O' is 5 cm. P is a point at a distance of 3 cm from 'O'. Then the number of tangents that can be drawn to the circle is
(a) 1
(b) 2
(c) 0
(d) 3

Ans: (c)
Sol:
To determine the number of tangents that can be drawn to the circle, we need to consider the relative position of the point P with respect to the circle.
If a point is located inside the circle, there are no tangents that can be drawn to the circle.
If a point is located on the circle, there is exactly one tangent that can be drawn to the circle at that point.
If a point is located outside the circle, there are exactly two tangents that can be drawn to the circle from that point.
In this case, the point P is located at a distance of 3 cm from the center of the circle, which is less than the radius of the circle (5 cm). Therefore, the point P is located inside the circle. Hence, no tangents can be drawn to the circle from the point P.
Therefore, the answer is (c) 0.


Q4. There is no tangent to a circle passing through a point lying ..... the circle.
(a) inside
(b) outside
(c) on the circle
(d) none of these
Ans: 
(a)
Sol: Tangent touches the circle at one point only and so it is not possible for a point inside a  circle.


Q5. In the given figure, if OC = 9 cm and OB = 15 cm, then BC + BD is equal to:
Class 10 Maths Chapter 10 Practice Question Answers - Circles(a) 18cm
(b) 12cm
(c) 24cm
(d) 36 cm
Ans:
(c)
Sol:
We know that, a tangent to a circle is perpendicular to the radius at the point of contact.
So, △OCB is right a triangle, right angled at C.
Hence, by Pythagoras' theorem, we have:
Class 10 Maths Chapter 10 Practice Question Answers - Circles
We also know that, the tangents drawn from the same external point to a circle are equal.
Since BC and BD are tangents drawn from the same external point, B, we have:
BC=BD=12 cm.
So, BC+BD=24 cm.
Hence, BC+BD=24 cm.


Q6. In the given figure,  tangents PQ and PR are drawn from an external point p to a circle with center O, such that ∠RPQ=30º . A chord RS is drawn parallel to the tangent PQ. Find ∠RQS.

Class 10 Maths Chapter 10 Practice Question Answers - Circles

Sol:
∠RPQ is given as 30º, and we want to find ∠RQS.
Step 1: Find ∠RPQ + ∠RQS
Since PQ is a tangent to the circle at point Q, and RS is a chord parallel to PQ, we have:
∠RPQ = ∠RQS (Alternate segment theorem)
Step 2: Substitute the known angle value
∠RPQ + ∠RQS = 30º + ∠RQS

Step 3: Use the fact that angles in a triangle add up to 180º
Since QSR is a triangle, we have:
∠RQS + ∠QRS + ∠QSR = 180º
Step 4: Substitute the known angle value
∠RQS + 30º + ∠QSR = 180º
Step 5: Solve for ∠RQS
∠RQS = 180º - 30º - ∠QSR
∠RQS = 150º - ∠QSR
Now, we need to find ∠QSR. Since RS is a parallel chord, we can use the fact that alternate interior angles are equal when a transversal intersects parallel lines. Thus, ∠QSR = ∠RPQ = 30º.
Now we can find ∠RQS:
∠RQS = 150º - 30º
∠RQS = 120º
So, the measure of ∠RQS is 120 degrees.


Q7. The maximum number of common tangents that can be drawn to two circles intersecting at two distinct points is
(a) 1
(b) 2
(c) 3
(d) 4
Ans:
(b)
Sol:
only two common tangents are possible
because circles intersect at two points.


Q8. If radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is tangent to the other circle is
(a) 3cm
(b) 6cm
(c) 9 cm
(d) 1 cm
Ans:
(b)
Sol:
Given−
The radii of two concentric cirles with centre O are 5cm&4cm.
The chord AB of outer circle touches the inner circle at P.
To find out−
The length of AB=?.
The radius of a   circle is at the right angle at the point of contact of the tangent to the circle with the tangent.    

Solution−
AB touches the inner circle at P.
∴ AB=2AP, OP⊥AB
⟹ΔAOP is a right angled one with AO as the hypotenuse.

Class 10 Maths Chapter 10 Practice Question Answers - Circles


Q9. In the given figure, O is the centre of a circle of radius 5 cm, T is a point such that OT= 13 cm and OT intersects the circle at E. If AB is the tangent to the circle at E, find the length of AB.
Class 10 Maths Chapter 10 Practice Question Answers - Circles

Sol: 
OP=OQ=5cm
OT=13cm
OP and PT are radius and tangent respectively at contact point P.
∴ ∠OPT=90 º
So, by pythagoras theorem, in right angled ΔOPT,

PT2  = OT2 −OP2 =132 - 52 =169−25=144
⇒PT=12cm
AP and AE are two tangents from an external point A to a circle.
∴ AP=AE
AEB is tangent and OE is radius at contact point E.
So, AB⊥OT ___(i)
So, by Pythagoras theorem, in right angled. ΔAET.
Class 10 Maths Chapter 10 Practice Question Answers - Circles
Class 10 Maths Chapter 10 Practice Question Answers - Circles

In ΔTPO and ΔTQO,
OT=OT [common]
PT=QT [Tangents from T]
OP=OQ [Radii of same circle]
∴ ΔTPO≅ΔTQO [By SSS criterion of congruence]
⇒∠1=∠2 ___(ii) [CPCT]
In ΔETA and ΔETB,
ET=ET [Common]
∠TEA=∠TEB=90º
  [From (i)]
∠1=∠2 [CPCT] [From (ii)]
∴ ΔETA ≅ ΔETB [By ASA criterion of congruence]
⇒AE=BE [CPCT]
Class 10 Maths Chapter 10 Practice Question Answers - Circles
Hence, the required length is 20/3 cm.


Q10. There is only one tangent at any point on the circumference of a circle. Say true or false
(a) True
(b) False
(c) Ambiguous
(d) Data insufficient

Ans: (a)
Sol: Only one tangent possible at a point on the circumference of a circle.
 

The document Class 10 Maths Chapter 10 Practice Question Answers - Circles is a part of the Class 10 Course Mathematics (Maths) Class 10.
All you need of Class 10 at this link: Class 10
Are you preparing for Class 10 Exam? Then you should check out the best video lectures, notes, free mock test series, crash course and much more provided by EduRev. You also get your detailed analysis and report cards along with 24x7 doubt solving for you to excel in Class 10 exam. So join EduRev now and revolutionise the way you learn!
Sign up for Free Download App for Free
127 videos|551 docs|75 tests

Up next

127 videos|551 docs|75 tests
Download as PDF

Up next

Explore Courses for Class 10 exam
Related Searches

Summary

,

video lectures

,

practice quizzes

,

MCQs

,

Objective type Questions

,

shortcuts and tricks

,

study material

,

ppt

,

Viva Questions

,

past year papers

,

Sample Paper

,

Class 10 Maths Chapter 10 Practice Question Answers - Circles

,

Free

,

Class 10 Maths Chapter 10 Practice Question Answers - Circles

,

Class 10 Maths Chapter 10 Practice Question Answers - Circles

,

Semester Notes

,

pdf

,

Important questions

,

Exam

,

mock tests for examination

,

Previous Year Questions with Solutions

,

Extra Questions

;