All Exams  >   EmSAT Achieve  >   Mathematics for EmSAT Achieve  >   All Questions

All questions of Integration for EmSAT Achieve Exam

  • a)
    cos(sin-1x) + c
  • b)
    sin-1x + c
  • c)
    sin(cos-1x) + c
  • d)
    x + c
Correct answer is option 'D'. Can you explain this answer?

Divey Sethi answered
cos(sin-1x)/(1-x2)½……………….(1)
t = sin-1 x
dt = dx/(1-x2)½
Put the value of dt in eq(1)
= ∫cost dt
= sint + c
= sin(sin-1 x) + c
⇒ x + c

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Leelu Bhai answered
I = ∫√(x² + 5x)dx= ∫√(x² + 5x + 25/4 - 25/4)= ∫√{(x + 5/2)² - (5/2)²}={1/2(x+5/2)(√x² + 5x)} - {25/8 log{(x + 5/2)+√x²+ 5x}}= {(2x + 5)/4 (√x² + 5x)} - {25/8 log{(x + 5/2)+√x²+ 5x}}Thus, option D is correct...

Evaluate:  
  • a)
  • b)
    1/√3 arc tan[(x-2)/√5] + C
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Deepak Kapoor answered
  
Let's apply the integral substitution,
substitute 
Now use the standard integral :
substitute back u=(x-2) and add a constant C to the solution,
 

  • a)
    , where C is a constant
  • b)
    , where C is a constant
  • c)
    , where C is a constant
  • d)
    , where C is a constant
Correct answer is option 'C'. Can you explain this answer?

Neha Sharma answered
 q = √x, dq = dx/2√x
⇒ dx = 2q dq
so the integral is 2∫qcosqdq
integration by parts using form 
∫uv' = uv − ∫u'v
here u = q, u'= 1 and v'= cosq, v=sinq
so we have 2(qsinq −∫sinqdq)
= 2(qsinq + cosq + C)
= 2(√xsin√x + cos√x + C)

Evaluate: 
  • a)
    1/2
  • b)
    1/4
  • c)
    1
  • d)
    1/8
Correct answer is option 'B'. Can you explain this answer?

Sumair Sadiq answered
This is maths questions I can explain it but you know it is not possible here because this app is not allow to take photo but try it ok let tan inverce 4x =t diff both side wrt x 4x³/1+x⁴ Ka square
x cube / 1+ x8 =dt/4 I = £ 0 se pie by 2 (because when x= 0 t = pie by 2and x = infinity then t = 0 )
I = 1/4 £ 0 se pie by 2 sin t l = 1/4 (- cos t limit 0 se pie by 2 )l = 1/4 ( - cos pie by 2 + cos 0) l = 1/4 ( 0+ 1) l= 1/4 × 1l= 1/4
use my WhatsApp number for further questions but only for study 7060398771

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?

Preeti Iyer answered
 (x)½ (a - x)½ dx
=  ∫(ax - x2)½ dx
=  ∫{-(x2 - ax)½} dx
=  ∫{-(x2 - ax + a2/4 - a2/4)½} dx
=  ∫{-(x - a/2)2 - a2/4} dx
=  ∫{(a/2)2 - (x - a/2)2} dx
=  ½(x - a/2) {(a/2)2 - (x - a/2)2} + (a2/4) (½ sin-1(x - a)/a2)
= {(2x - a)/4 (ax - x2)½} + {a2/8 sin-1(2x - a)/a} + c

The integration of the function ex.cos3x is:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Om Desai answered
Let I = ∫ex . cos 3x dx
⇒ I = cos 3x × ∫ex dx − ∫[d/dx(cos 3x) × ∫ex dx]dx
⇒ I = ex cos 3x − ∫(− 3 sin 3x . ex)dx
⇒ I = ex cos 3x + 3∫sin 3x . ex dx
⇒ I = ex cos 3x + 3[sin 3x × ∫ex dx − ∫{ddx(sin 3x) × ∫ex dx}dx]
⇒ I = ex cos 3x + 3[sin 3x . ex − ∫3 cos 3x . ex dx]
⇒ I = ex cos 3x + 3 ex . sin 3x − 9∫ex . cos 3x dx
⇒ I =  ex cos 3x + 3 ex . sin 3x − 9I
⇒ 10I =  ex cos 3x + 3 ex . sin 3x
⇒ I = 1/10[ex cos 3x + 3 ex . sin 3x] + C

  • a)
    -1
  • b)
    zero
  • c)
    1
  • d)
    2
Correct answer is option 'B'. Can you explain this answer?

Praveen Kumar answered
∫(0 to 4)(x)1/2 - x2 dx
= [[(x)3/2]/(3/2) - x2](0 to 4)
= [[2x3/2]/3 - x2](0 to 4)
= [[2(0)3/2]/3 - (0)2]] -  [[2(4)3/2]/3 - (4)2]]
= 0-0
= 0

The value of the integral is:
  • a)
    2e – 1
  • b)
    2e + 1
  • c)
    2e
  • d)
    2(e – 1)
Correct answer is option 'D'. Can you explain this answer?

Correct Answer : d
Explanation :  ∫(-1 to 1) e|x| dx
∫(-1 to 0) e|x|dx + ∫(0 to 1) e|x|dx
 e1 -1 + e1 - 1
=> 2(e - 1)

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Vikas Kapoor answered
I=∫sin(logx)×1dx
= sin(logx) × x−∫cos(logx) × (1/x)×xdx
= xsin(logx)−∫cos(logx) × 1dx
= xsin(logx)−[cos(logx) × x−∫sin(logx) × (1/x) × xdx]
∴ I=xsin(logx)−cos(logx) × x−∫sin(logx)dx
2I=x[sin(logx)−cos(logx)]
∴ I=(x/2)[sin(logx)−cos(logx)]

Integrate 
  • a)
    3x – 4 log |sec x| + tan x + C
  • b)
    3x + 4 log |sec x| + tan x
  • c)
    3x + 4 log |sec X| + tan x + C
  • d)
    3x + 4 log |sec x| – tan x + C
Correct answer is option 'C'. Can you explain this answer?

Vikas Kapoor answered
∫(2+tan x)2dx
= ∫(4 + tan2 x + 4tan x)dx
= ∫4 dx + ∫tan2 x dx + 4∫tan x dx
= 4x + ∫(sec2 x - 1)dx + 4(log|sec x|)
= 4x + tanx - x + 4(log|sec x|)
3x + tanx + 4(log|sec x|) + c

  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Vikas Kapoor answered
Option d is correct, because it is the property of definite integral
 ∫02a f(x) dx = ∫0a f(x) dx + ∫0a f(2a – x) dx

  • a)
    π
  • b)
    π/2
  • c)
  • d)
    π/4
Correct answer is option 'B'. Can you explain this answer?

Tarun Kaushik answered
For sin2(X), we will use the cos double angle formula:
cos(2X) = 1 - 2sin2(X)
The above formula can be rearranged to make sin2(X) the subject:
sin2(X) = 1/2(1 - cos(2X))
You can now rewrite the integration: 
∫sin2(X)dX = ∫1/2(1 - cos(2X))dX
Because 1/2 is a constant, we can remove it from the integration to make the calculation simpler. We are now integrating:
1/2 x ∫(1 - cos(2X)) dX 
= 1/2 x (X - 1/2sin(2X)) + C]-pi/4 to pi/4
∫sin2(X) dX = [1/2X - 1/4sin(2X)]-pi/4 to pi/4 + C
½[-pi/2] - 1/4sin(2(-pi/4)] - ½[pi/2] - 1/4sin(2(pi/4)] 
= π/2

Evaluate: 
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'B'. Can you explain this answer?

Om Desai answered
sin2x = 1 - cos2x
∫sinx(sin2x - 3cos2x + 15)dx
Put cos2x = t
 ∫sinx(1 - cos2x - 3cos2x + 15)dx
=  ∫sinx (16 - 4cos2x)dx
Put t = cosx, differentiate with respect to x, we get 
dt/dx = -sinx
= -  ∫ [(16 - 4t2)]1/2dt
= -2 ∫ [(2)2 - (t)2]½
= -2{[(2)2 - (t)2]½ + 2sin-1(t/2)} + c
= - cosx {[4 - (cos)2x]½ - 4sin-1(cosx/2)} + c

  • a)
    log(sin x + cos x) +C
  • b)
    sin 2x + cos 2x + C
  • c)
    log(sin x - cos x) +C
  • d)
    sin 2x - cos 2x + C
Correct answer is option 'A'. Can you explain this answer?

Om Desai answered
 I = ∫cos2x/(sinx+cosx)2dx
⇒I = ∫cos2x−sin2x(sinx+cosx)2dx
⇒I = ∫[(cosx+sinx)(cosx−sinx)]/(sinx+cosx)2dx
⇒I = ∫(cosx−sinx)/(sinx+cosx)dx
Let sinx+cosx = t 
(cosx−sinx)dx = dt
Then, I = ∫dt/t
I = log|t|+c
I = log|sinx + cosx| + c

The value of  is:
  • a)
    10
  • b)
    17/2
  • c)
    7/2
  • d)
    5
Correct answer is option 'A'. Can you explain this answer?

Sushil Kumar answered
∫(-3 to 3) (x+1)dx
=  ∫(-3 to -1) (x+1)dx +  ∫(-1 to 3) (x+1) dx 
= [x2 + x](-3 to -1) + [x2 + x](-1 to 3)
= [½ - 1 - (9/2 - 3)] + [9/2 + 3 - (½ - 1)]
= -[-4 + 2] + [4 + 4]
= -[-2] + [8]
= 10

If   then the value of k is:
  • a)
    7/8
  • b)
    5/8
  • c)
    1/2
  • d)
    3/2
Correct answer is option 'C'. Can you explain this answer?

Sushil Kumar answered
Let I=∫(0 to k) 1/[1 + 4x2]dx = π8
Now, ∫(0 to k) 1/[4(1/4 + x2)]dx
= 2/4[tan−1 2x]0 to k
= 1/2tan-1 2k − 0 = π/8
1/2tan−1 2k = π8
⇒ tan−1 2k = π/4
⇒ 2k = 1
∴ k = 1/2

Evaluate:  
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Om Desai answered
 ∫sin2(2x+1) dx
Put t = 2x+1
dt = 2dx
dx= dt/2
= 1/2∫sin2 t dt
=1/2∫(1-cos2t)/2 dt
= 1/4∫(1-cos2t) dt
= ¼[(t - (sin2t)/2]dt
= t/4 - sin2t/8 + c
= (2x+1)/4 - ⅛(sin(4x+2)) + c
= x/2 - 1/8sin(4x+2) + ¼ + c
As ¼ is also a constant, so eq is = x/2 - 1/8sin(4x+2) + c

The integral of tan4x is:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'A'. Can you explain this answer?

Aryan Khanna answered
Begin by rewriting  ∫tan4xdx as ∫tan2xtan2xdx.      
Now we can apply the Pythagorean Identity,  tan2x+1=sec2x,                                         or tan2x=sec2x−1

∫tan2x tan2x dx = ∫(sec2x−1)tan2xdx

Distributing the tan2x:
             = ∫sec2xtan2x − tan2xdx
Applying the sum rule:
                = ∫sec2xtan2xdx − ∫tan2xdx
We'll evaluate these integrals one by one.
First Integral 
This one is solved using a 
Let u = tanx


Applying the substitution,
Because u = tanx,
Second Integral
Since we don't really know what  ∫tan2xdx is by just looking at it, try applying the tan2x = sec2x−1 
identity again:
∫tan2xdx = ∫(sec2x−1)dx
Using the sum rule, the integral boils down to:
∫sec2xdx − ∫1dx
The first of these,  ∫sec2xdx, is just tanx + C.
The second one, the so-called "perfect integral", is simply x+C.
Putting it all together, we can say:
∫tan2xdx = tanx + C − x + C
And because C+C is just another arbitrary constant, we can combine it into a general constant C:
∫tan2xdx = tanx − x + C
Combining the two results, we have:
∫tan4xdx=∫sec2xtan2xdx−∫tan2xdx
=(tan3x/3 + C) − (tanx − x + C)
=tan3x/3 − tanx + x + C
Again, because C+C is a constant, we can join them into one C.

The integral of   is:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Nandini Iyer answered
 ∫dx/x3(x-2 -4).............(1)
=  ∫x-3 dx/(x-2 - 4)​
Let t = (x-2 - 4)
dt = -2x-3 dx
x-3 = -dt/2
Put the value of x-3 in eq(1)
= -½  ∫dt/t
= -½ log t + c
= -½ log(x-2 - 4) + c
= -½ log(1-4x2)/x2 + c
= ½ log(x2/(1 - 4x2)) + c

Evaluate:
  • a)
  • b)
  • c)
  • d)
Correct answer is option 'D'. Can you explain this answer?

Hansa Sharma answered
Let  x=tanθ , so that  θ=tan−1x ,  dx=sec2θdθ 
Then the given integral is equivalent to
∫tan−1(2x/(1−x2)dx
=∫tan−1 (2tanθ/(1−tan2θ))⋅sec2θdθ 
=∫tan−1tan2θ⋅sec2θdθ 
=2×∫θsec2θdθ 
(integrate by parts)
=2θ⋅∫sec2θdθ −2⋅∫1⋅(∫sec2θdθ)dθ 
=2θtanθ−2⋅∫tanθdθ 
=2θtanθ−2loge secθ+c 
=2xtan−1x−2loge√1+x2+c 
=2xtan−1x−loge(1+x2)+c 

  • a)
    g (x) h (s) = constant
  • b)
    g (x) = h (x).
  • c)
    g (x) - h (x) = constant
  • d)
    h (x) + g (x) = constant
Correct answer is option 'C'. Can you explain this answer?

Integration of a function can have many possibility by adding variable C.
for instance :
take integral of X^2=X^3/3 +C
integral of X^2 can be X^3/3 +1, X^3/3 +2.....
their d/CE is a constant.

Chapter doubts & questions for Integration - Mathematics for EmSAT Achieve 2025 is part of EmSAT Achieve exam preparation. The chapters have been prepared according to the EmSAT Achieve exam syllabus. The Chapter doubts & questions, notes, tests & MCQs are made for EmSAT Achieve 2025 Exam. Find important definitions, questions, notes, meanings, examples, exercises, MCQs and online tests here.

Chapter doubts & questions of Integration - Mathematics for EmSAT Achieve in English & Hindi are available as part of EmSAT Achieve exam. Download more important topics, notes, lectures and mock test series for EmSAT Achieve Exam by signing up for free.

Mathematics for EmSAT Achieve

146 videos|222 docs|220 tests

Top Courses EmSAT Achieve