UPSC Exam  >  UPSC Notes  >  Mathematics Optional Notes for UPSC  >  Vector Identity and Vector Equations

Vector Identity and Vector Equations | Mathematics Optional Notes for UPSC PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Edurev123 
4. Vector Identity and Vector Equations 
4.1 Show that div (grad ?? ?? )=?? (?? +?? )?? ?? -?? 
(2009: 12 marks) 
Solution: 
?·(??? ?? ) =?? (?? +1)?? ?? -2
?? 2
 =?? 2
+?? 2
+?? 2
 
Differentiating partially with respect to ?? on both sides 
2?? ??? ??? =2?? ?
??? ??? =
?? ?? ??????????????????                                                       
??? ??? =
?? ?? ;
??? ??? =
?? ?? grad ?? ?? =? 
?
??? ??ˆ(?? ?? )=? 
??? ?? ??? ??ˆ
 =? ?? ?? ?? -1
??? ??? ??ˆ=?? ?? ?? -1
? 
?? ?? ??ˆ
 
                                                                                 =?? ?? ?? -2
??  
?? h?????? ,                                                               ?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
 
div (grad ?? ?? ) =? 
?
??? ??ˆ·?? ?? ?? -2
? ?? ??ˆ=? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
·?? ??? ??? )
 =3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =?? (?? -2)?? ?? -2
+3?? ?? ?? -2
=?? (?? +1)?? ?? -2
 
4.2 Find the directional derivative of 
?? (?? ,?? )=?? ?? ?? ?? +???? 
at the point (?? ,?? ) in the direction of a unit vector which makes an angle of 
?? ?? with 
the ?? -axis. 
(2010: 12 Marks) 
Solution: 
Page 2


Edurev123 
4. Vector Identity and Vector Equations 
4.1 Show that div (grad ?? ?? )=?? (?? +?? )?? ?? -?? 
(2009: 12 marks) 
Solution: 
?·(??? ?? ) =?? (?? +1)?? ?? -2
?? 2
 =?? 2
+?? 2
+?? 2
 
Differentiating partially with respect to ?? on both sides 
2?? ??? ??? =2?? ?
??? ??? =
?? ?? ??????????????????                                                       
??? ??? =
?? ?? ;
??? ??? =
?? ?? grad ?? ?? =? 
?
??? ??ˆ(?? ?? )=? 
??? ?? ??? ??ˆ
 =? ?? ?? ?? -1
??? ??? ??ˆ=?? ?? ?? -1
? 
?? ?? ??ˆ
 
                                                                                 =?? ?? ?? -2
??  
?? h?????? ,                                                               ?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
 
div (grad ?? ?? ) =? 
?
??? ??ˆ·?? ?? ?? -2
? ?? ??ˆ=? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
·?? ??? ??? )
 =3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =?? (?? -2)?? ?? -2
+3?? ?? ?? -2
=?? (?? +1)?? ?? -2
 
4.2 Find the directional derivative of 
?? (?? ,?? )=?? ?? ?? ?? +???? 
at the point (?? ,?? ) in the direction of a unit vector which makes an angle of 
?? ?? with 
the ?? -axis. 
(2010: 12 Marks) 
Solution: 
?????????? :                          ?? (?? ,?? ) =?? 2
?? 3
+????
??? =
??? ??? ??ˆ+
??? ??? ??ˆ=
?(?? 2
?? 3
+???? )
??? ??ˆ+
?(?? 2
?? 3
+???? )
??? ??ˆ
 =(2?? ?? 3
+?? )??ˆ+(3?? 2
?? 2
+?? )??ˆ
Now,                         (??? )
(2,1)
 =(2×2×?? 3
+1)??ˆ+(3×2
2
×??ˆ
-
2
+2)??ˆ
 =5?? +14?? 
(?)
(2,1)
 is the direction of unit vector at angle 
?? 3
 with ?? -axis is 
(??? )
(2,1)
·(cos 
?? 3
??ˆ+sin 
?? 3
??ˆ)=(5??ˆ+14??ˆ)·(
1
2
??ˆ+
v3
2
??ˆ)=
5
2
+7v3 
4.3 Show that the vector field defined by the vector function 
???? =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
) 
is conservative. 
(2010: 12 marks) 
Solution: 
Given : 
??  =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
)
 =?? ?? 2
?? 2
??ˆ+?? 2
?? ?? 2
??ˆ+?? 2
?? 2
?? ??ˆ
?×??  =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? 2
?? 2
?? 2
?? ?? 2
?? 2
?? 2
?? |
|
 
=??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? 2
?? ?? 2
)-??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? ?? 2
?? 2
)+??ˆ
(
?
??? ?? 2
?? ?? 2
-
?
??? ?? ?? 2
?? 2
) 
=??ˆ(2?? 2
?? 2
-2?? 2
?? 2
)-??ˆ(2?? ?? 2
?? -2?? ?? 2
?? )+??ˆ
(2???? ?? 2
-2???? ?? 2
)=0 
as ?×?? =0.???  is conservative. 
4.4 Prove that : 
?????? (?? ???? )=?? (?????? ???? )+(???????? ?? )·????  
where ?? is a scalar funcion. 
(2011 : 20 Marks) 
Solution: 
Page 3


Edurev123 
4. Vector Identity and Vector Equations 
4.1 Show that div (grad ?? ?? )=?? (?? +?? )?? ?? -?? 
(2009: 12 marks) 
Solution: 
?·(??? ?? ) =?? (?? +1)?? ?? -2
?? 2
 =?? 2
+?? 2
+?? 2
 
Differentiating partially with respect to ?? on both sides 
2?? ??? ??? =2?? ?
??? ??? =
?? ?? ??????????????????                                                       
??? ??? =
?? ?? ;
??? ??? =
?? ?? grad ?? ?? =? 
?
??? ??ˆ(?? ?? )=? 
??? ?? ??? ??ˆ
 =? ?? ?? ?? -1
??? ??? ??ˆ=?? ?? ?? -1
? 
?? ?? ??ˆ
 
                                                                                 =?? ?? ?? -2
??  
?? h?????? ,                                                               ?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
 
div (grad ?? ?? ) =? 
?
??? ??ˆ·?? ?? ?? -2
? ?? ??ˆ=? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
·?? ??? ??? )
 =3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =?? (?? -2)?? ?? -2
+3?? ?? ?? -2
=?? (?? +1)?? ?? -2
 
4.2 Find the directional derivative of 
?? (?? ,?? )=?? ?? ?? ?? +???? 
at the point (?? ,?? ) in the direction of a unit vector which makes an angle of 
?? ?? with 
the ?? -axis. 
(2010: 12 Marks) 
Solution: 
?????????? :                          ?? (?? ,?? ) =?? 2
?? 3
+????
??? =
??? ??? ??ˆ+
??? ??? ??ˆ=
?(?? 2
?? 3
+???? )
??? ??ˆ+
?(?? 2
?? 3
+???? )
??? ??ˆ
 =(2?? ?? 3
+?? )??ˆ+(3?? 2
?? 2
+?? )??ˆ
Now,                         (??? )
(2,1)
 =(2×2×?? 3
+1)??ˆ+(3×2
2
×??ˆ
-
2
+2)??ˆ
 =5?? +14?? 
(?)
(2,1)
 is the direction of unit vector at angle 
?? 3
 with ?? -axis is 
(??? )
(2,1)
·(cos 
?? 3
??ˆ+sin 
?? 3
??ˆ)=(5??ˆ+14??ˆ)·(
1
2
??ˆ+
v3
2
??ˆ)=
5
2
+7v3 
4.3 Show that the vector field defined by the vector function 
???? =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
) 
is conservative. 
(2010: 12 marks) 
Solution: 
Given : 
??  =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
)
 =?? ?? 2
?? 2
??ˆ+?? 2
?? ?? 2
??ˆ+?? 2
?? 2
?? ??ˆ
?×??  =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? 2
?? 2
?? 2
?? ?? 2
?? 2
?? 2
?? |
|
 
=??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? 2
?? ?? 2
)-??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? ?? 2
?? 2
)+??ˆ
(
?
??? ?? 2
?? ?? 2
-
?
??? ?? ?? 2
?? 2
) 
=??ˆ(2?? 2
?? 2
-2?? 2
?? 2
)-??ˆ(2?? ?? 2
?? -2?? ?? 2
?? )+??ˆ
(2???? ?? 2
-2???? ?? 2
)=0 
as ?×?? =0.???  is conservative. 
4.4 Prove that : 
?????? (?? ???? )=?? (?????? ???? )+(???????? ?? )·????  
where ?? is a scalar funcion. 
(2011 : 20 Marks) 
Solution: 
 LHS =div (?? ??? 
)
RHS=?? div ?? +( gradt )·??? 
 
Take LHS : 
div (?? ) =S?? ?
??? (?? ?? )
 =(? ?? ??? ??? )·?? +?? ? ?? ?
ˆ
??? (?? )
 =grad ?? ·?? +?? (div ?? )
 =?? (div ?? )+(grad ?? )·?? 
 = RHS 
 LHS  = RHS. Hence Proved. 
 
So, 
4.5 If ?? and ?? are two scalar fields and ??? 
 is a vector field, such thet 
?? ??? 
=???????? ?? ?? 
find the value of ??? 
· curl ??? 
. 
(2010: 10 marks) 
Solution: 
  
??????????                       ?? ?? 
 =grad ?? ?                                ?? 
 =
1
?? ·grad ?? ?                 ?? 
·curl ?? 
 =(
1
?? grad ?? )·cur (
1
?? grad ?? )
 =(
1
?? grad ?? )·[(grad 
1
?? )×(grad ?? )+
1
?? (curl grad ?? )](?curl (?? ?? 
)=(grad ?? )×?? 
+?? Curl ?? 
 =(
1
?? grad ?? )·[(grad 
1
?? )×(grad ?? )+0]
=
1
?? [grad ?? grad 
1
?? grad ?? ]=0
 
[? It a vector repeats in a scalar triple product, then its value is zero]. 
4.6 Calculate ?? ?? (?? ?? ) and find its expression in terms of ?? and ?? , ?? being the 
distance of any point (?? ,?? ,?? ) iom the origin, ?? being a constant and ?? ?? being the 
Laplace operator. 
(2013 : 10 Marks) 
Solution: 
Page 4


Edurev123 
4. Vector Identity and Vector Equations 
4.1 Show that div (grad ?? ?? )=?? (?? +?? )?? ?? -?? 
(2009: 12 marks) 
Solution: 
?·(??? ?? ) =?? (?? +1)?? ?? -2
?? 2
 =?? 2
+?? 2
+?? 2
 
Differentiating partially with respect to ?? on both sides 
2?? ??? ??? =2?? ?
??? ??? =
?? ?? ??????????????????                                                       
??? ??? =
?? ?? ;
??? ??? =
?? ?? grad ?? ?? =? 
?
??? ??ˆ(?? ?? )=? 
??? ?? ??? ??ˆ
 =? ?? ?? ?? -1
??? ??? ??ˆ=?? ?? ?? -1
? 
?? ?? ??ˆ
 
                                                                                 =?? ?? ?? -2
??  
?? h?????? ,                                                               ?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
 
div (grad ?? ?? ) =? 
?
??? ??ˆ·?? ?? ?? -2
? ?? ??ˆ=? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
·?? ??? ??? )
 =3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =?? (?? -2)?? ?? -2
+3?? ?? ?? -2
=?? (?? +1)?? ?? -2
 
4.2 Find the directional derivative of 
?? (?? ,?? )=?? ?? ?? ?? +???? 
at the point (?? ,?? ) in the direction of a unit vector which makes an angle of 
?? ?? with 
the ?? -axis. 
(2010: 12 Marks) 
Solution: 
?????????? :                          ?? (?? ,?? ) =?? 2
?? 3
+????
??? =
??? ??? ??ˆ+
??? ??? ??ˆ=
?(?? 2
?? 3
+???? )
??? ??ˆ+
?(?? 2
?? 3
+???? )
??? ??ˆ
 =(2?? ?? 3
+?? )??ˆ+(3?? 2
?? 2
+?? )??ˆ
Now,                         (??? )
(2,1)
 =(2×2×?? 3
+1)??ˆ+(3×2
2
×??ˆ
-
2
+2)??ˆ
 =5?? +14?? 
(?)
(2,1)
 is the direction of unit vector at angle 
?? 3
 with ?? -axis is 
(??? )
(2,1)
·(cos 
?? 3
??ˆ+sin 
?? 3
??ˆ)=(5??ˆ+14??ˆ)·(
1
2
??ˆ+
v3
2
??ˆ)=
5
2
+7v3 
4.3 Show that the vector field defined by the vector function 
???? =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
) 
is conservative. 
(2010: 12 marks) 
Solution: 
Given : 
??  =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
)
 =?? ?? 2
?? 2
??ˆ+?? 2
?? ?? 2
??ˆ+?? 2
?? 2
?? ??ˆ
?×??  =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? 2
?? 2
?? 2
?? ?? 2
?? 2
?? 2
?? |
|
 
=??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? 2
?? ?? 2
)-??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? ?? 2
?? 2
)+??ˆ
(
?
??? ?? 2
?? ?? 2
-
?
??? ?? ?? 2
?? 2
) 
=??ˆ(2?? 2
?? 2
-2?? 2
?? 2
)-??ˆ(2?? ?? 2
?? -2?? ?? 2
?? )+??ˆ
(2???? ?? 2
-2???? ?? 2
)=0 
as ?×?? =0.???  is conservative. 
4.4 Prove that : 
?????? (?? ???? )=?? (?????? ???? )+(???????? ?? )·????  
where ?? is a scalar funcion. 
(2011 : 20 Marks) 
Solution: 
 LHS =div (?? ??? 
)
RHS=?? div ?? +( gradt )·??? 
 
Take LHS : 
div (?? ) =S?? ?
??? (?? ?? )
 =(? ?? ??? ??? )·?? +?? ? ?? ?
ˆ
??? (?? )
 =grad ?? ·?? +?? (div ?? )
 =?? (div ?? )+(grad ?? )·?? 
 = RHS 
 LHS  = RHS. Hence Proved. 
 
So, 
4.5 If ?? and ?? are two scalar fields and ??? 
 is a vector field, such thet 
?? ??? 
=???????? ?? ?? 
find the value of ??? 
· curl ??? 
. 
(2010: 10 marks) 
Solution: 
  
??????????                       ?? ?? 
 =grad ?? ?                                ?? 
 =
1
?? ·grad ?? ?                 ?? 
·curl ?? 
 =(
1
?? grad ?? )·cur (
1
?? grad ?? )
 =(
1
?? grad ?? )·[(grad 
1
?? )×(grad ?? )+
1
?? (curl grad ?? )](?curl (?? ?? 
)=(grad ?? )×?? 
+?? Curl ?? 
 =(
1
?? grad ?? )·[(grad 
1
?? )×(grad ?? )+0]
=
1
?? [grad ?? grad 
1
?? grad ?? ]=0
 
[? It a vector repeats in a scalar triple product, then its value is zero]. 
4.6 Calculate ?? ?? (?? ?? ) and find its expression in terms of ?? and ?? , ?? being the 
distance of any point (?? ,?? ,?? ) iom the origin, ?? being a constant and ?? ?? being the 
Laplace operator. 
(2013 : 10 Marks) 
Solution: 
                                        ?
2
(?? ?? ) =?·?(?? ?? )
?(?? ?? ) =? 
?
??? (?? ?? )??ˆ=?? ?? ?? -1
? 
??? ??? ??ˆ=?? ?? ?? -1
? 
??? ??? ??ˆ
??????                                       ?? 2
 =?? 2
+?? 2
+?? 2
?2?? ??? ??? =2?? ?
??? ??? =
?? ?? ?                                     ?(?? ?? ) =?? ?? ?? -1
? 
?? ?? ??ˆ=?? ?? ?? -2
?? 
?? h??????                                     ??  =?? ??ˆ+???? +?? ??ˆ
?·?(?? ?? ) =(? 
?
??? ??ˆ)·(?? ?? ?? -2
? 
?? ?? )
 =? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
??? ??? ·?? )
 =(3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? )
 =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =3?? ?? ?? -2
+?? (?? -2)?? ?? -2
 =?? (?? +1)?? ?? -2
 
4.7 Find ?? (?? ) such that ?? ?? =
??? 
?? ?? and ?? (?? )=?? . 
(2016 : 10 Marks) 
Solution: 
We know that 
??? =?? '
(?? )??? =?? '
(?? )
?? 
?? 
 We have,                                  ??? =
?? 
?? 5
 
?                                          ?? '
(?? )
?? 
?? =
?? 
?? 5
?                                 ?? [
?? '
(?? )
?? -
1
?? 5
]=0
 
Since, ?? ?0,?                               ?? (?? )=
1
?? 4
 
Integrating, we get 
?? (?? )=
-1
3?? 3
+?? 
Page 5


Edurev123 
4. Vector Identity and Vector Equations 
4.1 Show that div (grad ?? ?? )=?? (?? +?? )?? ?? -?? 
(2009: 12 marks) 
Solution: 
?·(??? ?? ) =?? (?? +1)?? ?? -2
?? 2
 =?? 2
+?? 2
+?? 2
 
Differentiating partially with respect to ?? on both sides 
2?? ??? ??? =2?? ?
??? ??? =
?? ?? ??????????????????                                                       
??? ??? =
?? ?? ;
??? ??? =
?? ?? grad ?? ?? =? 
?
??? ??ˆ(?? ?? )=? 
??? ?? ??? ??ˆ
 =? ?? ?? ?? -1
??? ??? ??ˆ=?? ?? ?? -1
? 
?? ?? ??ˆ
 
                                                                                 =?? ?? ?? -2
??  
?? h?????? ,                                                               ?? =?? ??ˆ+?? ??ˆ+?? ??ˆ
 
div (grad ?? ?? ) =? 
?
??? ??ˆ·?? ?? ?? -2
? ?? ??ˆ=? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
·?? ??? ??? )
 =3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =?? (?? -2)?? ?? -2
+3?? ?? ?? -2
=?? (?? +1)?? ?? -2
 
4.2 Find the directional derivative of 
?? (?? ,?? )=?? ?? ?? ?? +???? 
at the point (?? ,?? ) in the direction of a unit vector which makes an angle of 
?? ?? with 
the ?? -axis. 
(2010: 12 Marks) 
Solution: 
?????????? :                          ?? (?? ,?? ) =?? 2
?? 3
+????
??? =
??? ??? ??ˆ+
??? ??? ??ˆ=
?(?? 2
?? 3
+???? )
??? ??ˆ+
?(?? 2
?? 3
+???? )
??? ??ˆ
 =(2?? ?? 3
+?? )??ˆ+(3?? 2
?? 2
+?? )??ˆ
Now,                         (??? )
(2,1)
 =(2×2×?? 3
+1)??ˆ+(3×2
2
×??ˆ
-
2
+2)??ˆ
 =5?? +14?? 
(?)
(2,1)
 is the direction of unit vector at angle 
?? 3
 with ?? -axis is 
(??? )
(2,1)
·(cos 
?? 3
??ˆ+sin 
?? 3
??ˆ)=(5??ˆ+14??ˆ)·(
1
2
??ˆ+
v3
2
??ˆ)=
5
2
+7v3 
4.3 Show that the vector field defined by the vector function 
???? =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
) 
is conservative. 
(2010: 12 marks) 
Solution: 
Given : 
??  =?????? (???? ??ˆ+???? ??ˆ+???? ??ˆ
)
 =?? ?? 2
?? 2
??ˆ+?? 2
?? ?? 2
??ˆ+?? 2
?? 2
?? ??ˆ
?×??  =
|
|
??ˆ ??ˆ ??ˆ
?
??? ?
??? ?
??? ?? ?? 2
?? 2
?? 2
?? ?? 2
?? 2
?? 2
?? |
|
 
=??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? 2
?? ?? 2
)-??ˆ(
?
??? ?? 2
?? 2
?? -
?
??? ?? ?? 2
?? 2
)+??ˆ
(
?
??? ?? 2
?? ?? 2
-
?
??? ?? ?? 2
?? 2
) 
=??ˆ(2?? 2
?? 2
-2?? 2
?? 2
)-??ˆ(2?? ?? 2
?? -2?? ?? 2
?? )+??ˆ
(2???? ?? 2
-2???? ?? 2
)=0 
as ?×?? =0.???  is conservative. 
4.4 Prove that : 
?????? (?? ???? )=?? (?????? ???? )+(???????? ?? )·????  
where ?? is a scalar funcion. 
(2011 : 20 Marks) 
Solution: 
 LHS =div (?? ??? 
)
RHS=?? div ?? +( gradt )·??? 
 
Take LHS : 
div (?? ) =S?? ?
??? (?? ?? )
 =(? ?? ??? ??? )·?? +?? ? ?? ?
ˆ
??? (?? )
 =grad ?? ·?? +?? (div ?? )
 =?? (div ?? )+(grad ?? )·?? 
 = RHS 
 LHS  = RHS. Hence Proved. 
 
So, 
4.5 If ?? and ?? are two scalar fields and ??? 
 is a vector field, such thet 
?? ??? 
=???????? ?? ?? 
find the value of ??? 
· curl ??? 
. 
(2010: 10 marks) 
Solution: 
  
??????????                       ?? ?? 
 =grad ?? ?                                ?? 
 =
1
?? ·grad ?? ?                 ?? 
·curl ?? 
 =(
1
?? grad ?? )·cur (
1
?? grad ?? )
 =(
1
?? grad ?? )·[(grad 
1
?? )×(grad ?? )+
1
?? (curl grad ?? )](?curl (?? ?? 
)=(grad ?? )×?? 
+?? Curl ?? 
 =(
1
?? grad ?? )·[(grad 
1
?? )×(grad ?? )+0]
=
1
?? [grad ?? grad 
1
?? grad ?? ]=0
 
[? It a vector repeats in a scalar triple product, then its value is zero]. 
4.6 Calculate ?? ?? (?? ?? ) and find its expression in terms of ?? and ?? , ?? being the 
distance of any point (?? ,?? ,?? ) iom the origin, ?? being a constant and ?? ?? being the 
Laplace operator. 
(2013 : 10 Marks) 
Solution: 
                                        ?
2
(?? ?? ) =?·?(?? ?? )
?(?? ?? ) =? 
?
??? (?? ?? )??ˆ=?? ?? ?? -1
? 
??? ??? ??ˆ=?? ?? ?? -1
? 
??? ??? ??ˆ
??????                                       ?? 2
 =?? 2
+?? 2
+?? 2
?2?? ??? ??? =2?? ?
??? ??? =
?? ?? ?                                     ?(?? ?? ) =?? ?? ?? -1
? 
?? ?? ??ˆ=?? ?? ?? -2
?? 
?? h??????                                     ??  =?? ??ˆ+???? +?? ??ˆ
?·?(?? ?? ) =(? 
?
??? ??ˆ)·(?? ?? ?? -2
? 
?? ?? )
 =? 
?
??? (?? ?? ?? -2
?? )
 =? (?? ?? ?? -2
+?? (?? -2)?? ?? -3
??? ??? ·?? )
 =(3?? ?? ?? -2
+? ?? (?? -2)?? ?? -3
?? 2
?? )
 =3?? ?? ?? -2
+?? (?? -2)?? ?? -4
? ?? 2
 =3?? ?? ?? -2
+?? (?? -2)?? ?? -2
 =?? (?? +1)?? ?? -2
 
4.7 Find ?? (?? ) such that ?? ?? =
??? 
?? ?? and ?? (?? )=?? . 
(2016 : 10 Marks) 
Solution: 
We know that 
??? =?? '
(?? )??? =?? '
(?? )
?? 
?? 
 We have,                                  ??? =
?? 
?? 5
 
?                                          ?? '
(?? )
?? 
?? =
?? 
?? 5
?                                 ?? [
?? '
(?? )
?? -
1
?? 5
]=0
 
Since, ?? ?0,?                               ?? (?? )=
1
?? 4
 
Integrating, we get 
?? (?? )=
-1
3?? 3
+?? 
                                                             ?? (1)=0?0=
-1
3·1
+?? ?3=
1
3
?? (?? )=
1
3
(1-
1
?? 3
)                          
[
 
 
 
 ?=?? ?
??? +?? ?
??? +?? ?
??? ?? =???? +???? +????
?? =v?? 2
+?? 2
+?? 2
]
 
 
 
 
 
4.8 Show that ?? ?? [?? ·(
??? 
?? )]=
?? ?? ?? , where ??? =?? ??ˆ+?? ??ˆ+?? ??ˆ
 
[2021: 10 marks] 
Solution: 
We know that ?·(???? )=?? (??? )+?? (??? )                                                         (??) 
Putting ?? =?? and ?? =
1
?? 2
 in this identify, 
We get, 
?·(
?? 
?? 2
) =
1
?? 2
(??? )+?? (?·
1
?? 2
)
 =
3
?? 2
+?? ×[-
2
?? 3
??? ] [???? =3 and ??? (?? )=?? '
(?? )??? ] [???? =
1
?? 2
?? ]
 =
3
?? 2
+?? ×(-
2
?? 3
×
1
?? ?? )
 =
3
?? 2
-
2
?? 4
(?? ×?? )=
3
?? 2
-
2
?? 4
?? 2
=
1
?? 2
?
2
[?×(
?? ?? 2
)] =?
2
(
1
?? 2
)=?×(?×
1
?? 2
)
 =?×(
-2
?? 3
×??? )=?×(
-2
?? 3
×
1
?? ?? )
 =?×(
-2
?? 4
?? )
 =(-
2
?? 4
)(?·?? )+?? ·[?(-
2
?? 4
)], using the identity (i) 
 =-
2
?? 4
×3+?? ·[
8
?? 5
??? ]
 =-
6
?? 4
+
8
?? 6
?? =-
6
?? 4
+
8
?? 6
?? 2
 =-
6
?? 4
+
8
?? 4
=
2
?? 4
=2?? -4
 
  
Read More
387 videos|203 docs

Top Courses for UPSC

387 videos|203 docs
Download as PDF
Explore Courses for UPSC exam

Top Courses for UPSC

Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev
Related Searches

mock tests for examination

,

Vector Identity and Vector Equations | Mathematics Optional Notes for UPSC

,

video lectures

,

Free

,

past year papers

,

Semester Notes

,

Previous Year Questions with Solutions

,

Summary

,

Vector Identity and Vector Equations | Mathematics Optional Notes for UPSC

,

pdf

,

practice quizzes

,

Objective type Questions

,

Extra Questions

,

Important questions

,

Exam

,

shortcuts and tricks

,

Vector Identity and Vector Equations | Mathematics Optional Notes for UPSC

,

ppt

,

Sample Paper

,

MCQs

,

Viva Questions

,

study material

;