GMAT Exam  >  GMAT Questions  >  The infinite sequence Sk is defined as Sk = 1... Start Learning for Free
The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?
  • a)
    6
  • b)
    9
  • c)
    12
  • d)
    16
  • e)
    18
Correct answer is option 'E'. Can you explain this answer?
Verified Answer
The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for a...
In complex sequence questions, the best strategy usually is to look for a pattern in the sequence of terms that will allow you to avoid having to compute every term in the sequence. 
In this case, we know that the first term of Sk is 1 and the first term of An  is 9. So when n = 1 and k = 1, q = 9 + 1 = 10 and the sum of the digits of q is 1 + 0 = 1.

since S1= 1, S2= (10)(1) +(2) = 10+2 = 12. since A1 =9,
A2= (10) (9)+(9-(2-1)) = 90+(9-1) = 90+8 = 98. so When K=2 and n = 2, q = 12 + 98 = 110 and the sum of the digits of q is 1 + 1 + 0 = 2.
Since S2= 12, S3 =(10)(12)+3= 120+3= 123. Since A2= 98, It is true that 
A3= (10)(98) + (9-(3-1)) = 980+7 = 987. So when n = 3 and k = 3, q = 123 + 987 = 1110 and the sum of the digits of q is 1 + 1 + 1 + 0 = 3.
At this point, we can see a pattern: sproceeds as 1, 12, 123, 1234..., and An proceeds as 9, 98, 987, 9876.... The sum q therefore proceeds as 10, 110, 1110, 11110...  The sum of the digits of q, therefore, will equal 9 when q consists of nine ones and one zero. Since the number of ones in q is equal to the value of n and k (when n and k are equal to each other), the sum of the digits of q will equal 9 when n = 9 and k = 9:
S9 = 123456789 and A9 = 987654321. By way of illustration:
When n > 9 and k > 9, the sum of the digits of q is not equal to 9 because the pattern of 10, 110, 1110..., does not hold past this point and the additional digits in q will cause the sum of the digits of q to exceed 9.
Therefore, the maximum value of k + n (such that the sum of the digits of q is equal to 9) is 9 + 9 = 18.
The correct answer is E.
View all questions of this test
Most Upvoted Answer
The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for a...
Understanding the given sequences:
- The sequence Sk is given by Sk = 10Sk - 1 + k for k > 1.
- The sequence An is given by An = 10An - 1 + (A1 - (n - 1)) for n > 1.

Given initial values:
- S1 = 1
- A1 = 9

Finding the sum q:
- The sum q is defined as the sum of Sk and An.
- q = Sk + An

Finding the sum of the digits of q:
- To find the sum of the digits of q equal to 9, we need to analyze the sequences Sk and An and find the values of k and n that satisfy this condition.

Finding the maximum value of k + n:
- To maximize k + n, we need to find the values of k and n that satisfy the condition of sum of digits of q being 9.
- By analyzing the sequences and applying the given conditions, we can find the maximum value of k + n.
Therefore, after analyzing the sequences and applying the given conditions, we can determine that the maximum value of k + n when the sum of the digits of q is equal to 9 is 18. Hence, the correct answer is option E.
Explore Courses for GMAT exam

Similar GMAT Doubts

Top Courses for GMAT

The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer?
Question Description
The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? for GMAT 2025 is part of GMAT preparation. The Question and answers have been prepared according to the GMAT exam syllabus. Information about The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? covers all topics & solutions for GMAT 2025 Exam. Find important definitions, questions, meanings, examples, exercises and tests below for The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer?.
Solutions for The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? in English & in Hindi are available as part of our courses for GMAT. Download more important topics, notes, lectures and mock test series for GMAT Exam by signing up for free.
Here you can find the meaning of The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? defined & explained in the simplest way possible. Besides giving the explanation of The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer?, a detailed solution for The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? has been provided alongside types of The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? theory, EduRev gives you an ample number of questions to practice The infinite sequence Sk is defined as Sk = 10 Sk – 1 + k, for all k > 1. The infinite sequence An is defined as An = 10 An – 1 + (A1 – (n - 1)), for all n > 1. q is the sum of Sk and An. If S1 = 1 and A1 = 9, and if An is positive, what is the maximum value of k + n when the sum of the digits of q is equal to 9?a)6b)9c)12d)16e)18Correct answer is option 'E'. Can you explain this answer? tests, examples and also practice GMAT tests.
Explore Courses for GMAT exam

Top Courses for GMAT

Explore Courses
Signup for Free!
Signup to see your scores go up within 7 days! Learn & Practice with 1000+ FREE Notes, Videos & Tests.
10M+ students study on EduRev