A metre stick is held vertically with one end on the floor and is then...
Explanation of the scenario:
There are two key principles at play here: conservation of energy and conservation of momentum. When the metre stick is held vertically and then released, it begins to fall due to gravity. The end touching the floor is not allowed to slip, which means that the metre stick rotates around that point until the other end hits the ground.
Conservation of energy:
As the metre stick falls, its potential energy is converted into kinetic energy. At the instant before the other end hits the ground, all the potential energy has been converted into kinetic energy. This means that the kinetic energy at this point is equal to the initial potential energy of the metre stick.
Conservation of momentum:
Since the end touching the floor is not allowed to slip, the metre stick rotates around this point. As the metre stick falls, the linear momentum of the system is conserved. This means that the linear momentum just before the other end hits the ground is equal to the initial linear momentum of the system.
Calculating the final velocity:
By equating the kinetic energy to the initial potential energy and the final linear momentum to the initial linear momentum, we can solve for the final velocity at which the other end of the metre stick hits the ground. This final velocity can be calculated using the principles of conservation of energy and momentum.
In conclusion, the other end of the metre stick will hit the ground with a specific velocity, which can be determined by applying the principles of conservation of energy and momentum to the scenario.